必须了解的编程基础:分治算法

1. 分治算法思想

分治算法可行的前提是一个大问题的分解后的小实例是可以求解的。

  1. 分:把大问题分解为两个或者更少的实例。
  2. 治:分别解决每个小实例。
  3. 组合:把所有小实例的解组合成问题的解。

2. 实例:幂次方运算

对x的幂次数n进行分治:
x n = x m i d × x n − m i d = x ⌊ n / 2 ⌋ × x n − ⌊ n / 2 ⌋ (1) x^n = x^{mid}\times x^{n-mid}=x^{\lfloor n/2 \rfloor} \times x^{n-\lfloor n/2 \rfloor}\tag{1} xn=xmid×xnmid=xn/2×xnn/2(1)
c++ 程序代码实现如下:

#include<iostream>
using namespace std;

int myPower(int x, int n)
{
    // 治
    if(n == 0) return 1;
    if(n == 1) return x;
    if(n == 2) return x*x;
    // 分
    int mid = n / 2;
    int sub1_n = mid;
    int sub2_n = n - mid;
    int r1 = myPower(x, sub1_n);
    int r2 = myPower(x, sub2_n);
    // 组合
    return r1*r2;
}

int main()
{
	cout << myPower(2, 5) << endl;
}

运行结果是 32;

参考LeetCode 50上的题目修改和优化这个代码,使其能够计算浮点数的幂次方,以及负数次幂。

改进地方有:降低治部分内容,将其按偶次幂和奇次幂两种情况进行组合,从而进一步降低其时间复杂度。

    double quickMul(double x, long long N)   
     {        
     	// 治        
     	if(N == 0) return 1.0;        
     	// 分        
     	int mid = N / 2;        
     	double y = quickMul(x, mid);       
     	// 组合 (按奇数次幂和偶数次幂两种情况组合)        
     	return N % 2 == 0 ? y * y : y * y * x;    
     }
     
    double myPower(double x, int n)     
    {        
    	long long N = n;        
    	return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);    
    }

3. 时间复杂度分析

本部分分析将会使你明白,为什么公式(1)的分治算法比连乘的幂次运算的时间复杂度更低。

3.1 连乘法的时间复杂度

x × x x\times x x×x的时间复杂度看做是 O ( 1 ) O(1) O(1),那么 x n = x × x × . . . × x x^n=x\times x \times ... \times x xn=x×x×...×x的时间复杂度就是 O ( n ) O(n) O(n)

3.2 分治法的时间复杂度

公式(1)的 运行时间是: T ( n ) = 1 × T ( n / 2 ) + Θ ( 1 ) (2) T(n) = 1 \times T(n/2)+\Theta(1) \tag{2} T(n)=1×T(n/2)+Θ(1)(2)

  • 第一部分 1 × T ( n / 2 ) 1 \times T(n/2) 1×T(n/2)是分的计算量,其中因子1表示意思是通过Divide(分)办法计算 x n = x n / 2 × x n / 2 x^n=x^{n/2}\times x^{n/2} xn=xn/2×xn/2时,只需计算二分后的一半,即只需计算一个 x n / 2 x^{n/2} xn/2 .
  • 第二部分 Θ ( 1 ) \Theta(1) Θ(1)表示的是“治”部分的计算量,即 x × x x\times x x×x.
    递推式(2)计算得 T ( n ) = log ⁡ 2 n T(n) = \log_2^n T(n)=log2n, 计算方法见参考文献[1].

3.3 结论

显然, T ( n ) = log ⁡ 2 n T(n) = \log_2^n T(n)=log2n 是小于 O ( n ) O(n) O(n)的,即分治法的时间复杂度更低。

参考文献

[1]. https://www.bilibili.com/video/BV1Kx411f7bL?p=2
[2]. [美]萨特吉-萨尼,数据结构、算法与应用c++语言描述.机械工业出版社.2015.03

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值