Leetcode之 柱状图中最大的矩形

题目描述

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

思路

  1. 暴力遍历,果然超时了
  2. 分治法:先找到最短的一个柱子,则结果应当为以下三个面积的最大值:
    a. 以最短柱子为高,长为柱子数目
    b. 最短柱左侧最大面积
    c. 最短柱右侧最大面积
    然而需要注意的是如果柱子是有序的,分治法与暴力法没有区别,也会超时,因此需要判断柱子是否有序,若有序,则从左向右挨个计算右侧面积;若无序,则分治
  3. 栈的用法:主要思想在于遍历数组,找到以数组中每个元素为高度所能得到的最大面积,利用单调栈,具体可以自行画图来理解或参考

代码

方法一:

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        if(heights.size()==0)
            return 0;
        int length = heights.size();
        int maxarea = 0;
        for(int i = 0;i<length;i++)
        {
            int min_height = heights[i];
            for(int t = i;t>=0;t--)
            {
                min_height = min(min_height,heights[t]);
                maxarea = max(maxarea,min_height*(i-t+1));
            }
        }
        return maxarea;
    }
};

方法二:

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        if(heights.size()==0)
            return 0;
        int length = heights.size();
        return Help(heights,0,length-1);
    }
    int Help(vector<int>& heights,int start, int end)
    {
        if(start > end)
            return 0;
        int mid = start;
        bool sorted = true;
        for (int i = start+1; i <= end; ++i) {
            if(heights[i]<heights[i-1])
                sorted=false;
            if(heights[i] < heights[mid]){
                mid=i;
            } 
        }
        if(sorted)
        {
            int mx=0;
            for(int i=start;i<=end;++i)
               mx = max(mx,(end-i+1)*heights[i]);
            return mx;
        }
        else
            return max(heights[mid]*(end-start+1),max(Help(heights,start,mid-1),Help(heights,mid+1,end)));
    }
};

方法三:

class Solution {
public:
    int largestRectangleArea(vector<int>& heights)
{
    int ans = 0;
    vector<int> st;
    heights.insert(heights.begin(), 0);
    heights.push_back(0);
    for (int i = 0; i < heights.size(); i++)
    {
        while (!st.empty() && heights[st.back()] > heights[i])
        {
            int cur = st.back();
            st.pop_back();
            int left = st.back() + 1;
            int right = i - 1;
            ans = max(ans, (right - left + 1) * heights[cur]);
        }
        st.push_back(i);
    }
    return ans;
}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值