matplotlib的colorbar设置显示的刻度个数和指定的刻度值

通过matplotlib.ticker.MaxNLocator(nbins=n)来设置colorbar上的刻度值个数
import matplotlib.ticker as ticker
fig = plt.figure()
ax = fig.gca()
im = ax.imshow(np.random.random([10, 10]))
cb1 = plt.colorbar(im, fraction=0.03, pad=0.05)
tick_locator = ticker.MaxNLocator(nbins=4)  # colorbar上的刻度值个数
cb1.locator = tick_locator
cb1.update_ticks()
plt.show()

但这样colorbar上的刻度值不是从最大值和最小值开始和结束,如果想将colorbar上的刻度值从最大值和最小值开始和结束,可以手动设置colorbar上显示的刻度值:

import matplotlib.ticker as ticker
fig = plt.figure()
ax = fig.gca()
data = np.random.random([10, 10])
im = ax.imshow(data)
cb1 = plt.colorbar(im, fraction=0.03, pad=0.05)
tick_locator = ticker.MaxNLocator(nbins=5)  # colorbar上的刻度值个数
cb1.locator = tick_locator
cb1.set_ticks([np.min(data), 0.25,0.5, 0.75, np.max(data)])
cb1.update_ticks()
plt.show()

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值