欢迎关注我的公众号「DevOps和k8s全栈技术」,进公众号【服务】栏,可以看到技术群,点击即可加入学习交流群。↓↓↓
Kubernetes API Server 是集群的核心组件,其性能直接影响到整个集群的稳定性和响应速度。在高负载或大规模集群场景下,针对 API Server 的优化尤为重要。本文聚焦两个关键参数:max-mutating-requests-inflight
和 watch-cache-size
,通过解析其原理与优化方法,帮助您提升集群性能。
一、限制变更请求:max-mutating-requests-inflight
参数简介
max-mutating-requests-inflight
用于限制 API Server 同时处理的变更请求(Mutating Requests)的数量。变更请求是指对资源状态进行修改的操作,如创建、更新或删除资源。
必要性:Mutating 请求对系统资源的消耗较大,合理设置该参数可以避免 API Server 过载,从而提升集群稳定性。
推荐配置::
1. 一般建议
官方推荐值:500-1000,确保系统在大多数场景下性能稳定。
2. 高可用三节点 API Server 集群
总配置值:3000 左右。
单节点配置:每个 API Server 设置为 1000。
3. 大规模集群(如 5000 个节点)
高可用五节点 API Server 集群:总配置值 5000,每节点约 1000。
优势:均衡负载,防止单节点过载,提高整体稳定性。
调整与优化
监控与测试
API Server 响应时间。
Mutating 请求成功率。
监控指标:
测试建议:在不同负载下压测,观察低值设置引发的请求阻塞或高值导致的资源耗尽。
调整策略
逐步优化:从官方推荐值入手,根据监控数据逐步调整。每次调整后观察一段时间。
动态优化:集群规模变化时重新评估该参数,保持系统适应新的业务需求。
总结:
合理配置 max-mutating-requests-inflight
可以有效平衡 API Server 的负载和资源消耗。通过持续监控与动态调整,确保系统在高负载场景下依然稳定运行。
二、提升实时性:watch-cache-size
Watch 机制概述
传统轮询问题:
每次获取资源状态需要发送请求,带来高延迟与资源浪费。
Watch 优势:
通过长连接实时推送资源变化事件,显著提升响应速度,减少 API Server 负载。
Watch 缓存的作用
watch-cache
是 API Server 为提升 Watch 机制性能而设计的缓存机制:
加快响应:将资源对象和事件缓存在内存中,避免频繁读取底层存储(如 etcd)。
缓存命中率:较大的缓存可以覆盖更多资源请求,从而减少访问存储的次数。
参数解析:watch-cache-size
该参数决定了每种资源类型的缓存对象数量上限。
小缓存:响应延迟增加,因为部分请求需要访问底层存储。
大缓存:提高性能,但占用更多内存。
推荐配置
1. 计算公式
watch-cache-size = 节点数量 × 2
。
2. 实例配置
小型集群:100 个节点,建议缓存 200 个对象。
大型集群(5000 节点):建议缓存 10000 个对象。
调整与优化
监控指标
Watch 响应时间。
缓存命中率。
逐步调整
初始值:根据公式计算初始值。
调整范围:观察监控数据,逐步优化以适应实际负载。
总结:
watch-cache-size
直接影响 Watch 请求的性能表现。根据集群规模合理调整缓存大小,可以在提升响应速度的同时避免内存资源浪费。
三、总结与最佳实践
参数联动优化:
max-mutating-requests-inflight
控制变更请求并发量,避免系统过载。watch-cache-size
提升 Watch 请求性能,减少存储访问压力。
动态调整:定期评估业务负载,结合监控数据持续优化。
平衡性能与资源:在性能提升与资源消耗之间找到最佳平衡点。
通过合理配置这些关键参数,您可以大幅提升 Kubernetes API Server 的性能,从容应对复杂场景下的集群管理需求。
近期热文:
云计算架构师韩先超亲身经历 | 记录从大学到现在工作经历
推荐书籍:《Kubernetes从入门到DevOps企业应用实战》——韩老师以企业实战为背景出版的一本高质量书籍
K8s Scheduler Pod 启动失败:Error: failed to reserve container name
欢迎关注我的公众号「DevOps和k8s全栈技术」,进公众号【服务】栏,可以啃到技术群,点击即可加入学习交流群。↓↓↓
创作不易,关注,赞,在看,三连支持一波,感谢。↓