自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2186)
  • 收藏
  • 关注

原创 NPU/DSP/Vulkan 协同实战:影像模型的调度与热治理闭环

同一段影像链路里,去噪、分割、HDR 融合、色调映射各自吃算力,还都想卡住 16.7/33ms 的帧预算。解法不是“谁快用谁”,而是把 **NPU/DSP/GPU** 拉到一张调度台上:按算子剖面做**映射**(谁擅长就干谁)、用 **Vulkan + 外部内存 + 时间线信号量**把图像在模块间**零拷贝**流转,再用 **ADPF/Power HAL/Thermal HAL** 做**热治理闭环**(功耗预算→频率→降级)。本文给出可直接落地的协同规范:算子图切分、并行编排、热阈值与降级阶梯、KPI/埋

2025-10-05 14:59:16 954

原创 HDR 视频肤色稳定实战:动态元数据 × 人像优先测光的闭环联动

目标是**在 HDR 视频里把肤色稳住**:色相不漂、亮度不跳、曲线不呼吸。本文给出一套**工程可落地的规范与链路**:检测与跟踪人脸→在人像 ROI 上用 **ICtCp** 锁住肤色与中灰锚点→依据人像/高光占比分配动态范围→生成逐帧/逐段的**动态元数据**(HDR10+ 等效参数或 DV 概念映射)→通过**时域控制器**给 AE/AWB/ToneMap 统一加 EMA/迟滞/抗闪→在 Camera2 + GPU 渲染链路中稳定输出。附**验收阈值、JSON 报告、降级与回滚**,上手即可用。

2025-09-29 16:21:46 1211 1

原创 速度环 PID 实战:1–5 ms 下的离散化、抗饱和与前馈

在 1–5 ms 的快速循环里把速度环做稳,关键是三件事:**离散化正确**(Tustin)、**不让积分“冲到天上去”**(抗饱和)、**用前馈减轻闭环负担**。本文给出速度测量到控制输出的完整实现:速度估计的同步采样与滤波,PI/PID 的 Tustin 推导与代码,三种常用抗饱和办法,以及基于反电势与摩擦的电压前馈。本文为上半部分(§1–§5);下半部分将补上测试方法、调参策略与排错。

2025-09-28 19:11:58 1020 1

原创 差速底盘映射实战:从 v、ω 到左右轮,含饱和、渐变与补偿

给定底盘线速度 $v$ 与角速度 $\omega$,如何稳定地得到左右轮期望速度,并在电机/驱动极限下保持轨迹特性,是移动机器人控制的基石。本文给出参数定义、公式推导、曲率保持的饱和策略、分级渐变(加速度/加加速度)与死区、反向间隙补偿的工程实现,配套完整 C++ 代码骨架与调参要点。本篇为上半部分,覆盖 §1–§4;下半部分将接着完成补偿细节、验证与排错。

2025-09-27 12:30:00 1066

原创 HDR→SDR 双轨导出实战:相册/编辑器的导出矩阵与故障复盘

同一张 HDR 照片(或视频帧)在相册预览、编辑器导出、社媒分享会走**两条并行路径**:保留 HDR(JPEG\_R/HDR10/HLG)与生成 SDR(sRGB/P3 8-bit)。要保证“看着一致、哪里都能发”,就得把**输入制式 × 目标容器 × 设备能力 × 渲染链**列成矩阵,并配上**可核查的口径与降级策略*

2025-09-26 20:00:00 2167

原创 C++ 抽象化 PWM/FOC:同一套接口跑模拟与实机

把电机控制里最容易“写死”的三块——PWM 输出、相电流采样、FOC 运控——做成清晰的接口层:`IPWM`、`ICurrentSense`、`IMotor`。上层算法只面向接口,底层可在“仿真/回放/实机”之间无缝切换。文中给出最小可用的接口定义、实机与模拟实现骨架、时序与 ISR 边界,外加一个“一键换底座”的一致性验收用例,避免 ISR 里堆重计算、动态分配等典型坑。

2025-09-26 07:30:00 591

原创 Android 14/15 Ultra HDR 解码与渲染核查:从 Bitmap 到 GPU 的闭环路径

本文把 Android 14/15 上 **Ultra HDR(JPEG\_R)** 的端侧链路梳理成一条可核查、可回归的闭环:**文件→解码→Bitmap/GainMap→色域/位深→GPU 纹理→合成显示**。给出每一段的**成功判据与探针代码**、常见“掉增益/掉色深/错误色域”的归因方法,以及 **Skia/GL/Vulkan** 三条渲染路径下的差异与抓包手段(`dumpsys SurfaceFlinger`、`gfxinfo`、帧内格式/色域探针)。目标是把“看着像 HDR”的玄学,落到**位深

2025-09-25 20:00:00 1358

原创 把“脉冲”变成“里程”:编码器里程计与误差模型从 0 到 1

本文聚焦移动底盘最基础的里程计链路:**编码器脉冲 → 轮速/里程 → 位姿增量**。从硬件计数到软件时间戳,再到**差速/单轮模型**推导,完整梳理**溢出/抖动/抖边**等工程细节,并建立**误差来源分解**(轮径、基距、安装偏差、量化、打滑)与**噪声模型**(偏置/随机游走/白噪)。附带“直线/圆轨迹”两类标定与验收方法,给出可落地的 C/C++ 数据结构、口径与指标,帮你把“能跑”变成“跑得准”。

2025-09-25 07:30:00 743

原创 多模组 HDR 一致性实战:跨曝光/镜头的增益图对齐与风格锁定

多模组 HDR 想“看不出换镜头”,必须同时解决两件事:**增益图在不同曝光/镜头间的空间与辐射对齐**,以及**色彩/对比的风格一致性**。给出可直接落地的口径:用**几何+辐射双对齐**把各路增益图映射到统一“规范域”,再以**中灰/肤色双锚 + Hue 保持**约束整条曲线;提供**增益一致性指标(GCM)**、**肤色 ΔE00**、**亮度漂移 RMS**与**振铃/带状**门槛,配套回归脚本与降级策略(主镜头做锚、次镜头跟随;越线自动退回静态 HDR/SDR)。目标是:跨镜头切换、变焦过渡、不同

2025-09-24 20:00:00 947

原创 离线也能用:云断联下的优雅降级与自愈策略

设备上云并不代表“离网即瘫”。本文给出一套在 MCU/RTOS/轻量 Linux 边缘设备上落地的**离线优雅降级**方案:以**超时→断路器→本地替代→回放**为主线,配合**指数退避+抖动**与**全局限流**,既保证云不可用时的基本交互(本地控制/策略执行),又在网络恢复后**安全回放**(幂等写、顺序一致)并避免“重连风暴”。文中提供组件划分、状态机、参数口径、缓存结构与限流要点,并给出**人为断网**测试的可操作验证方法与合格线。

2025-09-24 07:30:00 898

原创 AI 去噪上线红线:纹理保真、蜡像脸与过锐振铃的量化门槛与线上哨兵

目标很直接:把“这张图被 AI 去噪毁了没”从主观吵架变成**可度量、可上线、可回滚**的工程规范。本文给出三件套:1. **红线指标**——纹理损失(中高频能量坍塌)、蜡像(肤区细节/微纹理熵塌陷)、过锐(边缘过冲/振铃)三类失真,各有明确公式与阈值;2. **标定流程**——离线用主观样本(多 ISO × 光型 × 肤色)把 MOS ↔ 指标拟合,反推出可执行门槛;3. **线上哨兵**——端/云轻量特征与日志口径、灰度放量/金丝雀、策略回退与黑白名单治理。落地后,任何模型/参数变更都能被守住:过

2025-09-23 20:00:00 664 1

原创 从“唤醒词”到“灯亮舵转”:一晚做完的端侧联动小项目

识别到“hey bot”后,LED 呼吸亮起、舵机摆到指定角度;接着进入冷却窗口,防止误触发或“指令风暴”。本文给出最小可用的系统骨架:**KWS → 话题消息 → 状态机 → 动作封装(LED/舵机)**,并实现**双层去抖 + 最小间隔**和**防抖计数**,保证连续触发场景下的稳定性。最后用**长时回放与统计字段**验证“不断触发也不乱”的目标。

2025-09-23 07:30:00 1215 1

原创 HDR 人像肤色稳定实战:AE/AWB/ToneMap 冲突解耦与优先级裁决

人像 HDR 最容易“翻车”的就是**肤色飘**:AE 抢亮度、AWB 拉白点、TM 又在肩部压高光,三方各自“对”却合起来“错”。本文给出一套**工程可落地**的裁决策略:以**肤色 ROI 锚点**为最高约束,AE 先对脸部入射照度收敛,AWB 在**肤色先验 + 光源模型**下缓变,TM 采用**色相保持 + 中灰/肤色双锚**且时域一致化。配套**阈值与回归**(ΔE00、亮度漂移 RMS、频闪注入),把“主观对”的口径落到**可度量**,并给出逆光、多脸、霓虹等极端场景的**例外分流**。

2025-09-22 20:00:00 766 1

原创 灰度→裁剪→MobileNet Lite:摄像头到分类/关键点的一条龙流水线

面向 MCU/SoC(Cortex-M/ESP32/轻量 A-class)的实时视觉任务,本文给出“摄像头→前处理→MobileNet 变体→分类/关键点→发布”的可落地方案。核心包括:**DMA 取流**(Ping-Pong/三缓冲)、**灰度缩放 + 中心裁剪**(定点/可用 DMA2D 加速)、**MobileNetV1/V2 轻量化**(width multiplier、输入分辨率)、**关键点头**(heatmap 或 2N 回归)、**流水线调度**(多缓冲、权重预取、任务分工),并建立 **F

2025-09-22 07:30:00 1236

原创 从麦克风到指令:KWS 端侧全链路落地(DMA→RingBuf→MFCC→int8 DNN→去抖)

面向 16 kHz 单麦的端侧关键词识别,本文给出一条可直接落地的实现路线:I2S/ADC **DMA 采样**→**环形缓冲**与滑窗重叠→**MFCC 特征**(预加重/分帧/加窗/FFT/Mel/log/DCT,整型口径对齐)→**int8 DNN 推理**(TFLM + CMSIS-NN)→**后处理去抖**(时序平滑/双阈值/抑抖窗口)。同时建立**延迟/内存/功耗**预算与 FAR/FRR 的评测闭环,避免“窗重叠错位”“量化口径不一致”“ISR 日志阻塞导致 p99 抖动”等常见坑。

2025-09-20 12:30:00 1292 1

原创 Ultra HDR(JPEG\_R)在相册/社媒的“带增益图分享”验证清单

目标很简单:**从相册到社媒,文件一路“带增益图”且观感一致**。本文给出一套可直接落地的工程清单:先以**文件结构探针**判定是否真·JPEG\_R(APP1/XMP/扩展 XMP 自洽、增益图通道/尺寸/scale/offset 合理),再把**系统分享链路**和**社媒平台二压路径**逐项验证(直传/裁剪/贴纸/拼图/长边限制/EXIF/XMP 保留策略),最后用**HDR A/B 观感指标**与**自动化回归脚本**固定口径,产出白/灰/黑名单与降级策略。重点是“可复现、可追责、可回退”,别让任何一

2025-09-19 20:00:00 1940 1

原创 把 5–20 ms 做满:体积 / 延迟 / 内存的三角稳态(batch=1 的嵌入式取舍术)

在 MCU/SoC 的实时任务里,**5–20 ms** 是最常见的推理预算区间。要把这个窗口“做满”而不过界,核心是处理好三个互相拉扯的量:**模型体积(Flash/RAM)**、**延迟(稳态与 P99)**、**内存峰值(激活 + 临时缓冲)**。本文给出一套可落地的取舍流程:用 **MACs→延迟** 的近似模型筛选结构,用**激活峰值推导**与**scratch 估算**卡内存上限,用 **batch=1 流水化**(IO/权重预取/双缓冲)把端到端 p95 拉下,再以 **FPS–峰值内存–功耗

2025-09-19 07:30:00 825

原创 移动端 AV1 + HDR10+ 观看/功耗实测:码率–质量–温度三维评估与拐点

本文给出一套**可复现**的移动端 AV1+HDR10+ 播放实测方法与结论框架:在**亮度/刷新率/环境温度/网络**严格控参下,采集**码率–质量–温度**三维数据,生成 Pareto 高效前沿与“用户感知质量等值线”,定位**码率拐点**与**热坍塌阈值**。流程覆盖:AV1 Main10 + HDR10+ 动态元数据贯通(比特流→容器→解码→显示)、VMAF-HDR 与主观小样的标定、Android 端功耗/温度采集与清洗(电流、SoC/表面温度、节流信号),输出**按分辨率/帧率/设备档**可落地

2025-09-18 20:00:00 1648

原创 把精度稳住:PTQ / QAT 与零点-尺度校准的一致性落地

部署到 MCU/NPU 前,量化带来的精度回撤若不控在 1–2 个百分点以内,多数模型都会在实机上“变脾气”。本文给出 PTQ(后训练量化)与 QAT(量化感知训练)的工程化路径:如何构建**代表性标定集**、选择**对称/非对称**与 **per-tensor/per-channel** 策略;如何用**直方图/百分位/MSE** 等方法确定激活与权重的量化阈值;以及把 **scale/zero-point** 一致地传递到推理引擎(TFLM/CMSIS-NN)与固件。最后用 **Top-1 / ROC

2025-09-18 07:30:00 755 1

原创 LL-HLS/CMAF 低延迟 HDR 直播:端到端卡点与参数闭环(HLG/PQ × HEVC/AV1 实战)

目标是把“玻璃到玻璃”控制在 2–4 秒,并且**整链路保持 HDR 正确性**:采集→编码→打包→CDN→播放器。本文给出一套可复用的参数口径与回归项:分片/子片时长(segment/part)、GOP 对齐、色彩与位深标记(VUI/SEI、nclx)、播放列表低延迟指令(EXT-X-PART、EXT-X-SERVER-CONTROL、PRELOAD-HINT)、CDN 的分块回源与缓存策略、播放器缓冲与漂移控制,以及用 CMCD/服务端日志闭环调参。重点不是“能播”,而是**稳定、可回退、可度量**。

2025-09-17 20:00:00 819

原创 把前处理变成可控的流水线:固定点归一化、滑窗与去噪

在 MCU 上,前处理链路(采样→去噪→特征/归一化→打包)决定了模型输入的可重复性与时延上限。本文围绕固定点实现与流水化展开:给出 Q 格式定标策略、滑窗器与环形缓冲的工程化写法,落地几种常见去噪(均值/中值/IIR/FIR)与归一化(RMS、Z-score)的整型版本,并用 SIMD/CMSIS-DSP 做加速。最后建立 PC 与 MCU 的一致性验证口径与阈值,避免“PC 好、上板漂”的老问题。

2025-09-17 07:30:00 763 1

原创 HDR 视频采集(Camera2)能力检测实战:10-bit、动态范围 Profile、时序与对齐

本文给出一套**工程可复现**的 HDR 视频采集能力检测方法:从系统与相机的 10-bit/HDR 动态范围 Profile 探针,到编码器(HEVC/AV1)Main10 的可用性校验,再到采集会话的构建与**时间戳/音视频对齐**。输出是可以直接塞进 CI 的“白/灰/黑名单”与 JSON 报告,覆盖分辨率、帧率、Profile 组合与异常回退策略。重点是**能拍、能编、能播、时间对得齐**四件事,一次性把坑踩完。

2025-09-16 20:00:00 1885

原创 把算力榨干:CMSIS-NN 加速路径(卷积/FC/激活的可验证替换法)

同一颗 Cortex-M,在不改模型结构的前提下,仅替换内核即可获得 1.5×–5× 的层级提速。关键在三点:**量化口径统一**(权重 per-channel、激活 per-tensor)、**选择正确的 CMSIS-NN API**(卷积/深度卷积/FC/池化/逐元素)以及**可重复的测量与对比**(DWT 周期计时、层级 MSE/余弦相似度、整网 FPS)。本文按“基线→逐层替换→验证”的顺序给出可直接粘贴的参数映射与调用骨架,并列出常见坑:尺度/零点不一致、padding/stride 口径不符、s

2025-09-16 07:30:00 874 1

原创 Ultra HDR(JPEG\_R)→ SDR 导出一致性:曲线、色域与页面亮度的协同实战

目标很简单:把一张 JPEG\_R 在你 App 里**稳定导出**成 SDR JPEG,发到任何平台都“看着像同一张”。这事分三步:先把增益图正确落地到线性域(别在伽马域乱捣),再用**可回归的曲线库**做高光压缩,最后把 **P3→sRGB** 的色域收敛和**页面亮度策略**绑在一起,避免导出前后“图亮了 UI 也跟着亮”。文中给出可落地的曲线参数、色域压缩口径、导出标签与回归脚本指标,重点照顾人像肤色与高光层次,不玩玄学。

2025-09-15 20:00:00 744

原创 把模型“瘦身”到能上板:TFLite Micro 架构要点与算子裁剪实战

在 MCU 上跑 DNN,核心不在“能不能跑”,而在**内存是否可控**与**算子是否最小化**。本文聚焦 TFLite Micro(TFLM)的落地路径:从 `MicroInterpreter` 与 `MicroAllocator` 的内存模型切入,手工注册**最小算子集**,用**静态 Tensor Arena** 取代一切动态分配,并给出**Arena 估算与收敛**的方法(含二分逼近与上线余量)。最后以“模型加载→AllocateTensors→峰值测量”为闭环,给出可直接粘贴的骨架代码与排错清单,

2025-09-15 07:30:00 1518 1

原创 把模型放上板:边缘 AI 的任务画像与可行性边界(MCU/NPU 实战视角)

边缘侧能不能跑 AI,不取决于“能不能训练”,而取决于**任务画像**与**资源预算**是否被老老实实地做过:输入速率与分辨率、前处理算子链、网络 MACs/参数量、峰值激活内存、端到端时延、功耗与温升。这篇文章给出一套通用的方法:先用**算力/内存/延迟三张预算表**把任务刻画清楚,再把目标分成**硬阈值/经典 DSP/轻量 DNN**三个等级,逐步着陆到 MCU 或带 NPU 的 SoC。

2025-09-14 10:35:06 740

原创 【GitHub开源项目】OpenCut 实战:本地起盘、时间轴/多轨剪辑与高质量导出

面向“能跑、能剪、能导出”的实际落地,本文从零起步梳理 OpenCut 的可复现路径:本地环境搭建与关键配置、时间轴与多轨编辑的高频操作与快捷键习惯、音视频协同与关键帧控制、以及 H.264 MP4 的导出参数基线(分辨率、帧率、码率、编码预设)。同时给出预览卡顿与导出失败的排查流程、长素材工程的性能优化清单,以及媒体资产管理与团队协作的工程化建议,确保读者拿到稳定的生产级使用范式。

2025-09-12 07:30:00 1181 1

原创 把时间“对准”、把消息“对味”:时间同步与 QoS 如何左右闭环质量

闭环做不好,往往不是算法差,而是**时间和消息路径**没处理干净:时钟不同步导致测量对不上拍,QoS 配置不当把延迟和抖动放大,最后在控制器眼里“一切都晚了一拍”。这篇复盘不谈空话,围绕“**时延/抖动 → 相位裕度 → 稳定性/跟踪性能**”这条因果链,把时间同步(PTP/Chrony/轻量往返偏移)与 ROS 2 QoS(Reliable/BestEffort、Depth、Deadline、Lifespan、TimeBasedFilter)放到同一坐标系里。给出可复现的量化方法(p95/p99 时延、周

2025-09-11 20:00:00 955

原创 Ultra HDR(JPEG\_R)增益图缺失/损坏的容错与重建:工程阈值、修复与反例库

这篇面向第三方相机与多媒体团队的工程实战稿,聚焦 Ultra HDR(JPEG\_R)在真实链路中“增益图坏损/缺失”的可预判、可容错、可重建。我们给出文件级体检要点(结构一致性、尺寸/通道/scale-offset 合法域、熵与分布检查),明确可落地的阈值口径与降级矩阵,并提供两类重建思路:无源(单帧 LDR 逆向估计)与有源(RAW/曝光对/缩略增益图辅助)。最后用反例库与回归集把坑“固化”,确保每次发版不和玄学谈恋爱,而是和数据说话。

2025-09-11 07:47:10 857 1

原创 CameraX 1.4 × Ultra HDR:从“拍到看”的最短闭环,第三方相机的能力探针与回归脚本

面向第三方相机 App 的研发同学,本文走一条最短闭环:能力探测 → 拍摄配置 → 文件校验 → 端内显示验证 → 回归脚本自动化。重点讲清 CameraX 1.4 的 Ultra HDR(JPEG\_R)抓拍要点、与 10-bit/动态范围设置的关系,以及在支持 HDR 的系统上如何避免 UI 被“点亮”过度。目标是不改大架构,把“能不能拍、拍到的是不是真·Ultra HDR、显示是否正确”三件事跑通,并且可重复、可回归。

2025-09-10 21:26:44 1222 1

原创 NautilusTrader 实战:事件驱动回测 × 多交易所联通 × 低延迟执行的量化框架落地指南

NautilusTrader 是一个开源、面向生产的高性能量化交易平台,采用事件驱动架构,支持在同一套代码中完成高保真历史回测与无缝实盘部署;核心以 Rust 提供执行与数据通道的高效组件,并与 Python 紧密集成以便快速开发策略与工具链。官方提供多交易所与数据源集成(如 Binance、Bybit、OKX、IB、Coinbase、Tardis 等),并给出从 `pip install` 到环境验证的标准化安装流程;回测侧包含 Portfolio、MessageBus、Actors、Execution

2025-09-10 07:30:00 1894

原创 【GitHub开源项目实战】Sim Studio(sim)实战:开源 AI 智能体工作流搭建、集成与优化指南

Sim Studio(simstudioai/sim)是一个开源的智能体工作流平台,支持开箱即用的可视化编排与多模型接入(OpenAI、Anthropic、Google、Groq、Ollama 等),并提供 60+ 预置工具连接(如 Gmail、Slack、Notion、Sheets、Airtable、Pinecone)。本文以实战为主:从本地化安装(`npx simstudio` / Docker Compose)到 Postgres + pgvector 的知识库构建,再到工作流触发(Chat/REST

2025-09-09 20:30:00 1045

原创 从 NNAPI 到 LiteRT:迁移清单与差异速查

这篇文章面向已有 NNAPI 项目的研发与落地同学,给出一条可执行的 LiteRT 迁移路径:先用一张“对象与概念对照表”厘清模型—编译—执行的差异,然后从 Delegate 选型、模型格式与量化支持、缓存与启动时延、线程与调度策略入手,逐步替换关键环节。文中配套迁移检查清单、常见坑位与回退方案,并给出性能/稳定性/能耗的统一观测口径与最小复现实验框架,帮助你在不改业务逻辑的前提下完成平滑切换。

2025-09-09 10:09:26 56 1

原创 Android 15:setDesiredHdrHeadroom 相册、播放器与相机预览

Android 15 提供的 `setDesiredHdrHeadroom` 允许应用为系统合成层“建议”HDR 亮度余量(以峰白与 SDR 白点的比值表示),解决相册缩略图与全屏查看、播放器控件与视频画面、相机预览与 UI 叠加等复合场景中 SDR 发灰或 HDR 被压抑的问题。本文针对相册、播放器、相机预览三类业务,梳理显示链路、设备能力探测与 API 生效边界,给出可落地的参数区间、状态机与质检门限,帮助团队在多机型上获得稳定一致的观感。

2025-09-08 22:09:35 1209

原创 IMU 上线到“看得见”:用 micro-ROS 打通 ROS 2 的低抖动可视化链路

这篇文章把“板载 IMU → MCU(FreeRTOS)→ micro-ROS → ROS 2 → 可视化”的整条链路一次性打通。我们用 C/C++ 在 MCU 上完成 IMU 采集与校准、时间戳与坐标系统一、基于 rclc 的 `sensor_msgs/Imu` 发布;在链路侧给出 QoS、MTU 与可靠性选择;在上位机侧配置订阅、RViz2/PlotJuggler 实时可视化与录包回放,并用一套可复现的压测指标(频率、p95 时延、丢包、CPU/内存水位)确保“稳态可交付”。文章配套最小可运行代码骨架、

2025-09-07 22:49:50 1158 1

原创 把带宽当成稀缺资源:低带宽 / 高丢包下的实时消息路径压测与 QoS 策略

在弱网环境(带宽受限、随机丢包、突发抖动)下,要让实时消息“到得准、占得省”,关键不在更强硬件,而在**可量化的压测方法**与**对症的 QoS 策略**。本文从工程视角出发,给出一套可复现的 **端到端压测方案**:链路建模(UDP/以太网、UART、CAN-FD)、丢包/限速与抖动注入、指标体系(p50/p95/p99 时延、丢包率、队列水位、CPU/内存高水位),并基于 DDS/RTPS 的 QoS 组合(Reliable/BestEffort、History/Depth、TimeBasedFilte

2025-09-05 23:44:23 1250 1

原创 把旋钮连到线上:ROS 2 ↔ MCU 参数动态调优实战

在移动机器人与嵌入式控制系统中,增益、阈值、滤波窗等“旋钮”直接影响稳定性与能效。把它们做成**可在线调整**的参数能极大缩短调试周期,但也带来一致性、实时性与安全风险。本文从工程视角搭建一条 **ROS 2 ↔ MCU** 的动态调参链路:上位用 `rclcpp` 声明参数、监听 `ParameterEvent`,下位在 FreeRTOS 上实现**参数服务器**(类型/范围校验、影子副本、原子应用、断电持久化)。围绕 **DDS-XRCE** 选 Reliable/Best-effort 的通道、定义

2025-09-04 22:38:57 1462 2

原创 HDR 片段与索引管理:CMAF/LL-HLS/DASH 的跨平台兼容

面向移动与大屏的 HDR 分发,**分段与索引**既决定延迟与快进精度,也直接影响跨平台播放器对 **PQ/HLG、BT.2020** 等色彩信令的正确识别。本文以 **CMAF** 为核心,梳理 **LL-HLS / Low-Latency DASH** 的分片粒度(segment/part)、索引结构(`sidx`、`SegmentTimeline`、`#EXT-X-MAP` 等)与时间对齐(PTS/墙钟),总结 **ExoPlayer / AVPlayer / Web(MSE)** 在 HDR 清单与

2025-09-04 09:02:58 1172 1

原创 HDR 视频伪影排查手册:色带、溢色与亮度跳变

HDR 视频在采集、后期、编码与回放的任何一段出现口径不一致或配置不当,都可能触发**色带、溢色和亮度跳变**等伪影。本文从**成因模型→可观测症状→量化指标→定位流程→修复策略**构建一套工程化清单,覆盖 PQ/HLG 工作流下的 10-bit 量化、色度采样、码控与渲染细节,给出可落地的参数区间、质检门限与自动化脚本建议,帮助团队在不牺牲低延迟与码率预算的前提下稳定消除伪影。

2025-09-03 21:00:00 1206 1

原创 把消息送上 MCU:micro-ROS 传输链路选型与端到端时延测量

micro-ROS 通过 DDS-XRCE 把 ROS 2 能力带到 MCU。链路怎么选、参数怎么配,决定了时延、抖动与丢包上限。本文用工程视角对比 **UDP/以太网、UART/串口、CAN-FD/自定义传输** 的适配要点与性能边界,给出 **Agent/Client 配置模板**、**缓冲与 MTU/分片** 的关键参数,并设计一套可复现的 **端到端时延测量** 方法:在 MCU 与主机双方打时间戳,结合 GPIO/逻分或定时器捕获,统计 p50/p95/p99 与丢包/重传。最后提供优化清单与排错

2025-09-03 07:30:00 1239

毕业论文模版+论文写作技巧+答辩攻略

提供符合本科及硕士论文要求的排版模板,含目录自动生成、图表编号、参考文献格式等,支持 Word 与 Overleaf 双版本,兼容大多数高校标准。

2025-03-31

基于 OpenPose 的人体姿态估计系统(支持深蹲/俯卧撑/硬拉识别 - Python源码+Streamlit界面)图像识别项目源码资源

本资源为一个完整的 基于 OpenPose 的人体姿态估计系统,可用于体育分析、健身指导、康复训练等应用场景。系统集成了深蹲、俯卧撑、硬拉等常见健身动作的识别分析功能,采用 Streamlit 构建界面,操作简单,适合毕业设计、课设演示、AI 项目实战。

2025-03-26

基于SpringBoot+Vue的校园失物招领系统(前后端分离+完整源码+数据库脚本)毕业设计

本项目为一套基于Spring Boot + Vue 3 实现的校园失物招领管理系统,前后端分离架构,功能完善,适合作为毕业设计、课程设计、课题展示系统使用。系统支持用户注册、失物发布、失物列表查询等功能,已集成 MySQL 数据库和 RESTful API 接口,前端使用 Vue3 + Element Plus 构建,界面简洁,部署方便。 技术栈: 后端:Java、SpringBoot、MyBatis、RESTful API 前端:Vue 3、Element Plus、Vue Router、Axios 数据库:MySQL 5.7+ 项目管理:Maven + Vite

2025-03-26

基于TensorFlow的人脸口罩佩戴检测系统(含完整源码 + Streamlit界面 + 摄像头实时识别)适合毕业设计/课设项目

本资源为一套完整的 人脸口罩佩戴检测系统,使用 Python + TensorFlow 实现,适合毕业设计/课设项目,支持图片上传预测、实时摄像头检测、图形界面交互、模型训练与日志记录。 功能亮点: MobileNetV2 搭建轻量级图像分类模型 支持模型训练、验证与日志可视化(TensorBoard) 一键上传图像进行分类预测 实时摄像头检测是否佩戴口罩 Streamlit 构建图形界面,适合演示与部署 完善的项目结构与单元测试支持

2025-03-26

基于TensorFlow的垃圾分类系统源码(MobileNetV2 + Streamlit 可视化 + 可训练)

本资源为一个完整的 垃圾图像分类系统源码包,适合深度学习初学者、课程设计、图像分类项目实践等场景。基于 TensorFlow 2.x 和 MobileNetV2 构建,支持自定义训练、模型推理、图形界面交互,并集成了单元测试和 TensorBoard 可视化功能。 使用预训练模型 MobileNetV2,支持迁移学习 可训练:自动划分训练/验证集、日志保存、模型权重保存 可推理:支持单张图像命令行预测 可视化:支持 Streamlit 图形界面上传图像并展示预测结果 可测试:内置 unittest 测试模块,验证模型输出维度 支持 TensorBoard 日志查看 欢迎下载试用、二次开发!适合做毕业设计、比赛入门项目、图像识别练习、小型可视化系统构建

2025-03-26

基于TensorFlow的图像修复系统源码(含GUI可视化界面 + 训练推理 + 单元测试)

本资源为一个完整的 基于深度学习的图像修复系统源码,使用 TensorFlow 2.x + UNet 构建,支持遮挡去除、破损图像修复、老照片重建等任务。配备 Streamlit 图形界面,可上传图像并手动绘制遮挡区域,点击一键修复,交互体验流畅。 主要功能: 支持训练模型(可加载自定义数据集) 支持推理预测(遮挡区域自动填充) 支持 GUI 可视化操作(Streamlit) 支持 TensorBoard 可视化训练日志 提供单元测试脚本,便于模型验证 项目结构清晰: model/:UNet 模型构建 train.py:训练脚本,支持日志记录 + TensorBoard infer.py:命令行推理脚本 app.py:交互式 Streamlit 网页界面 tests/:单元测试模块 logs/:训练日志目录 附带详细 README.md 中文使用说明 附带 requirements.txt 可一键安装依赖 模型结构兼容自定义掩码图、灰度遮挡、人为绘制等场景

2025-03-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除