自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2172)
  • 收藏
  • 关注

原创 从麦克风到指令:KWS 端侧全链路落地(DMA→RingBuf→MFCC→int8 DNN→去抖)

面向 16 kHz 单麦的端侧关键词识别,本文给出一条可直接落地的实现路线:I2S/ADC **DMA 采样**→**环形缓冲**与滑窗重叠→**MFCC 特征**(预加重/分帧/加窗/FFT/Mel/log/DCT,整型口径对齐)→**int8 DNN 推理**(TFLM + CMSIS-NN)→**后处理去抖**(时序平滑/双阈值/抑抖窗口)。同时建立**延迟/内存/功耗**预算与 FAR/FRR 的评测闭环,避免“窗重叠错位”“量化口径不一致”“ISR 日志阻塞导致 p99 抖动”等常见坑。

2025-09-20 12:30:00 538 1

原创 Ultra HDR(JPEG\_R)在相册/社媒的“带增益图分享”验证清单

目标很简单:**从相册到社媒,文件一路“带增益图”且观感一致**。本文给出一套可直接落地的工程清单:先以**文件结构探针**判定是否真·JPEG\_R(APP1/XMP/扩展 XMP 自洽、增益图通道/尺寸/scale/offset 合理),再把**系统分享链路**和**社媒平台二压路径**逐项验证(直传/裁剪/贴纸/拼图/长边限制/EXIF/XMP 保留策略),最后用**HDR A/B 观感指标**与**自动化回归脚本**固定口径,产出白/灰/黑名单与降级策略。重点是“可复现、可追责、可回退”,别让任何一

2025-09-19 20:00:00 1516 1

原创 把 5–20 ms 做满:体积 / 延迟 / 内存的三角稳态(batch=1 的嵌入式取舍术)

在 MCU/SoC 的实时任务里,**5–20 ms** 是最常见的推理预算区间。要把这个窗口“做满”而不过界,核心是处理好三个互相拉扯的量:**模型体积(Flash/RAM)**、**延迟(稳态与 P99)**、**内存峰值(激活 + 临时缓冲)**。本文给出一套可落地的取舍流程:用 **MACs→延迟** 的近似模型筛选结构,用**激活峰值推导**与**scratch 估算**卡内存上限,用 **batch=1 流水化**(IO/权重预取/双缓冲)把端到端 p95 拉下,再以 **FPS–峰值内存–功耗

2025-09-19 07:30:00 454

原创 移动端 AV1 + HDR10+ 观看/功耗实测:码率–质量–温度三维评估与拐点

本文给出一套**可复现**的移动端 AV1+HDR10+ 播放实测方法与结论框架:在**亮度/刷新率/环境温度/网络**严格控参下,采集**码率–质量–温度**三维数据,生成 Pareto 高效前沿与“用户感知质量等值线”,定位**码率拐点**与**热坍塌阈值**。流程覆盖:AV1 Main10 + HDR10+ 动态元数据贯通(比特流→容器→解码→显示)、VMAF-HDR 与主观小样的标定、Android 端功耗/温度采集与清洗(电流、SoC/表面温度、节流信号),输出**按分辨率/帧率/设备档**可落地

2025-09-18 20:00:00 1289

原创 把精度稳住:PTQ / QAT 与零点-尺度校准的一致性落地

部署到 MCU/NPU 前,量化带来的精度回撤若不控在 1–2 个百分点以内,多数模型都会在实机上“变脾气”。本文给出 PTQ(后训练量化)与 QAT(量化感知训练)的工程化路径:如何构建**代表性标定集**、选择**对称/非对称**与 **per-tensor/per-channel** 策略;如何用**直方图/百分位/MSE** 等方法确定激活与权重的量化阈值;以及把 **scale/zero-point** 一致地传递到推理引擎(TFLM/CMSIS-NN)与固件。最后用 **Top-1 / ROC

2025-09-18 07:30:00 705 1

原创 LL-HLS/CMAF 低延迟 HDR 直播:端到端卡点与参数闭环(HLG/PQ × HEVC/AV1 实战)

目标是把“玻璃到玻璃”控制在 2–4 秒,并且**整链路保持 HDR 正确性**:采集→编码→打包→CDN→播放器。本文给出一套可复用的参数口径与回归项:分片/子片时长(segment/part)、GOP 对齐、色彩与位深标记(VUI/SEI、nclx)、播放列表低延迟指令(EXT-X-PART、EXT-X-SERVER-CONTROL、PRELOAD-HINT)、CDN 的分块回源与缓存策略、播放器缓冲与漂移控制,以及用 CMCD/服务端日志闭环调参。重点不是“能播”,而是**稳定、可回退、可度量**。

2025-09-17 20:00:00 776

原创 把前处理变成可控的流水线:固定点归一化、滑窗与去噪

在 MCU 上,前处理链路(采样→去噪→特征/归一化→打包)决定了模型输入的可重复性与时延上限。本文围绕固定点实现与流水化展开:给出 Q 格式定标策略、滑窗器与环形缓冲的工程化写法,落地几种常见去噪(均值/中值/IIR/FIR)与归一化(RMS、Z-score)的整型版本,并用 SIMD/CMSIS-DSP 做加速。最后建立 PC 与 MCU 的一致性验证口径与阈值,避免“PC 好、上板漂”的老问题。

2025-09-17 07:30:00 721 1

原创 HDR 视频采集(Camera2)能力检测实战:10-bit、动态范围 Profile、时序与对齐

本文给出一套**工程可复现**的 HDR 视频采集能力检测方法:从系统与相机的 10-bit/HDR 动态范围 Profile 探针,到编码器(HEVC/AV1)Main10 的可用性校验,再到采集会话的构建与**时间戳/音视频对齐**。输出是可以直接塞进 CI 的“白/灰/黑名单”与 JSON 报告,覆盖分辨率、帧率、Profile 组合与异常回退策略。重点是**能拍、能编、能播、时间对得齐**四件事,一次性把坑踩完。

2025-09-16 20:00:00 1848

原创 把算力榨干:CMSIS-NN 加速路径(卷积/FC/激活的可验证替换法)

同一颗 Cortex-M,在不改模型结构的前提下,仅替换内核即可获得 1.5×–5× 的层级提速。关键在三点:**量化口径统一**(权重 per-channel、激活 per-tensor)、**选择正确的 CMSIS-NN API**(卷积/深度卷积/FC/池化/逐元素)以及**可重复的测量与对比**(DWT 周期计时、层级 MSE/余弦相似度、整网 FPS)。本文按“基线→逐层替换→验证”的顺序给出可直接粘贴的参数映射与调用骨架,并列出常见坑:尺度/零点不一致、padding/stride 口径不符、s

2025-09-16 07:30:00 835 1

原创 Ultra HDR(JPEG\_R)→ SDR 导出一致性:曲线、色域与页面亮度的协同实战

目标很简单:把一张 JPEG\_R 在你 App 里**稳定导出**成 SDR JPEG,发到任何平台都“看着像同一张”。这事分三步:先把增益图正确落地到线性域(别在伽马域乱捣),再用**可回归的曲线库**做高光压缩,最后把 **P3→sRGB** 的色域收敛和**页面亮度策略**绑在一起,避免导出前后“图亮了 UI 也跟着亮”。文中给出可落地的曲线参数、色域压缩口径、导出标签与回归脚本指标,重点照顾人像肤色与高光层次,不玩玄学。

2025-09-15 20:00:00 705

原创 把模型“瘦身”到能上板:TFLite Micro 架构要点与算子裁剪实战

在 MCU 上跑 DNN,核心不在“能不能跑”,而在**内存是否可控**与**算子是否最小化**。本文聚焦 TFLite Micro(TFLM)的落地路径:从 `MicroInterpreter` 与 `MicroAllocator` 的内存模型切入,手工注册**最小算子集**,用**静态 Tensor Arena** 取代一切动态分配,并给出**Arena 估算与收敛**的方法(含二分逼近与上线余量)。最后以“模型加载→AllocateTensors→峰值测量”为闭环,给出可直接粘贴的骨架代码与排错清单,

2025-09-15 07:30:00 1473 1

原创 把模型放上板:边缘 AI 的任务画像与可行性边界(MCU/NPU 实战视角)

边缘侧能不能跑 AI,不取决于“能不能训练”,而取决于**任务画像**与**资源预算**是否被老老实实地做过:输入速率与分辨率、前处理算子链、网络 MACs/参数量、峰值激活内存、端到端时延、功耗与温升。这篇文章给出一套通用的方法:先用**算力/内存/延迟三张预算表**把任务刻画清楚,再把目标分成**硬阈值/经典 DSP/轻量 DNN**三个等级,逐步着陆到 MCU 或带 NPU 的 SoC。

2025-09-14 10:35:06 693

原创 【GitHub开源项目】OpenCut 实战:本地起盘、时间轴/多轨剪辑与高质量导出

面向“能跑、能剪、能导出”的实际落地,本文从零起步梳理 OpenCut 的可复现路径:本地环境搭建与关键配置、时间轴与多轨编辑的高频操作与快捷键习惯、音视频协同与关键帧控制、以及 H.264 MP4 的导出参数基线(分辨率、帧率、码率、编码预设)。同时给出预览卡顿与导出失败的排查流程、长素材工程的性能优化清单,以及媒体资产管理与团队协作的工程化建议,确保读者拿到稳定的生产级使用范式。

2025-09-12 07:30:00 906 1

原创 把时间“对准”、把消息“对味”:时间同步与 QoS 如何左右闭环质量

闭环做不好,往往不是算法差,而是**时间和消息路径**没处理干净:时钟不同步导致测量对不上拍,QoS 配置不当把延迟和抖动放大,最后在控制器眼里“一切都晚了一拍”。这篇复盘不谈空话,围绕“**时延/抖动 → 相位裕度 → 稳定性/跟踪性能**”这条因果链,把时间同步(PTP/Chrony/轻量往返偏移)与 ROS 2 QoS(Reliable/BestEffort、Depth、Deadline、Lifespan、TimeBasedFilter)放到同一坐标系里。给出可复现的量化方法(p95/p99 时延、周

2025-09-11 20:00:00 930

原创 Ultra HDR(JPEG\_R)增益图缺失/损坏的容错与重建:工程阈值、修复与反例库

这篇面向第三方相机与多媒体团队的工程实战稿,聚焦 Ultra HDR(JPEG\_R)在真实链路中“增益图坏损/缺失”的可预判、可容错、可重建。我们给出文件级体检要点(结构一致性、尺寸/通道/scale-offset 合法域、熵与分布检查),明确可落地的阈值口径与降级矩阵,并提供两类重建思路:无源(单帧 LDR 逆向估计)与有源(RAW/曝光对/缩略增益图辅助)。最后用反例库与回归集把坑“固化”,确保每次发版不和玄学谈恋爱,而是和数据说话。

2025-09-11 07:47:10 833 1

原创 CameraX 1.4 × Ultra HDR:从“拍到看”的最短闭环,第三方相机的能力探针与回归脚本

面向第三方相机 App 的研发同学,本文走一条最短闭环:能力探测 → 拍摄配置 → 文件校验 → 端内显示验证 → 回归脚本自动化。重点讲清 CameraX 1.4 的 Ultra HDR(JPEG\_R)抓拍要点、与 10-bit/动态范围设置的关系,以及在支持 HDR 的系统上如何避免 UI 被“点亮”过度。目标是不改大架构,把“能不能拍、拍到的是不是真·Ultra HDR、显示是否正确”三件事跑通,并且可重复、可回归。

2025-09-10 21:26:44 1182 1

原创 NautilusTrader 实战:事件驱动回测 × 多交易所联通 × 低延迟执行的量化框架落地指南

NautilusTrader 是一个开源、面向生产的高性能量化交易平台,采用事件驱动架构,支持在同一套代码中完成高保真历史回测与无缝实盘部署;核心以 Rust 提供执行与数据通道的高效组件,并与 Python 紧密集成以便快速开发策略与工具链。官方提供多交易所与数据源集成(如 Binance、Bybit、OKX、IB、Coinbase、Tardis 等),并给出从 `pip install` 到环境验证的标准化安装流程;回测侧包含 Portfolio、MessageBus、Actors、Execution

2025-09-10 07:30:00 1697

原创 【GitHub开源项目实战】Sim Studio(sim)实战:开源 AI 智能体工作流搭建、集成与优化指南

Sim Studio(simstudioai/sim)是一个开源的智能体工作流平台,支持开箱即用的可视化编排与多模型接入(OpenAI、Anthropic、Google、Groq、Ollama 等),并提供 60+ 预置工具连接(如 Gmail、Slack、Notion、Sheets、Airtable、Pinecone)。本文以实战为主:从本地化安装(`npx simstudio` / Docker Compose)到 Postgres + pgvector 的知识库构建,再到工作流触发(Chat/REST

2025-09-09 20:30:00 950

原创 从 NNAPI 到 LiteRT:迁移清单与差异速查

这篇文章面向已有 NNAPI 项目的研发与落地同学,给出一条可执行的 LiteRT 迁移路径:先用一张“对象与概念对照表”厘清模型—编译—执行的差异,然后从 Delegate 选型、模型格式与量化支持、缓存与启动时延、线程与调度策略入手,逐步替换关键环节。文中配套迁移检查清单、常见坑位与回退方案,并给出性能/稳定性/能耗的统一观测口径与最小复现实验框架,帮助你在不改业务逻辑的前提下完成平滑切换。

2025-09-09 10:09:26 40 1

原创 Android 15:setDesiredHdrHeadroom 相册、播放器与相机预览

Android 15 提供的 `setDesiredHdrHeadroom` 允许应用为系统合成层“建议”HDR 亮度余量(以峰白与 SDR 白点的比值表示),解决相册缩略图与全屏查看、播放器控件与视频画面、相机预览与 UI 叠加等复合场景中 SDR 发灰或 HDR 被压抑的问题。本文针对相册、播放器、相机预览三类业务,梳理显示链路、设备能力探测与 API 生效边界,给出可落地的参数区间、状态机与质检门限,帮助团队在多机型上获得稳定一致的观感。

2025-09-08 22:09:35 1157

原创 IMU 上线到“看得见”:用 micro-ROS 打通 ROS 2 的低抖动可视化链路

这篇文章把“板载 IMU → MCU(FreeRTOS)→ micro-ROS → ROS 2 → 可视化”的整条链路一次性打通。我们用 C/C++ 在 MCU 上完成 IMU 采集与校准、时间戳与坐标系统一、基于 rclc 的 `sensor_msgs/Imu` 发布;在链路侧给出 QoS、MTU 与可靠性选择;在上位机侧配置订阅、RViz2/PlotJuggler 实时可视化与录包回放,并用一套可复现的压测指标(频率、p95 时延、丢包、CPU/内存水位)确保“稳态可交付”。文章配套最小可运行代码骨架、

2025-09-07 22:49:50 1122 1

原创 把带宽当成稀缺资源:低带宽 / 高丢包下的实时消息路径压测与 QoS 策略

在弱网环境(带宽受限、随机丢包、突发抖动)下,要让实时消息“到得准、占得省”,关键不在更强硬件,而在**可量化的压测方法**与**对症的 QoS 策略**。本文从工程视角出发,给出一套可复现的 **端到端压测方案**:链路建模(UDP/以太网、UART、CAN-FD)、丢包/限速与抖动注入、指标体系(p50/p95/p99 时延、丢包率、队列水位、CPU/内存高水位),并基于 DDS/RTPS 的 QoS 组合(Reliable/BestEffort、History/Depth、TimeBasedFilte

2025-09-05 23:44:23 1208 1

原创 把旋钮连到线上:ROS 2 ↔ MCU 参数动态调优实战

在移动机器人与嵌入式控制系统中,增益、阈值、滤波窗等“旋钮”直接影响稳定性与能效。把它们做成**可在线调整**的参数能极大缩短调试周期,但也带来一致性、实时性与安全风险。本文从工程视角搭建一条 **ROS 2 ↔ MCU** 的动态调参链路:上位用 `rclcpp` 声明参数、监听 `ParameterEvent`,下位在 FreeRTOS 上实现**参数服务器**(类型/范围校验、影子副本、原子应用、断电持久化)。围绕 **DDS-XRCE** 选 Reliable/Best-effort 的通道、定义

2025-09-04 22:38:57 1422 2

原创 HDR 片段与索引管理:CMAF/LL-HLS/DASH 的跨平台兼容

面向移动与大屏的 HDR 分发,**分段与索引**既决定延迟与快进精度,也直接影响跨平台播放器对 **PQ/HLG、BT.2020** 等色彩信令的正确识别。本文以 **CMAF** 为核心,梳理 **LL-HLS / Low-Latency DASH** 的分片粒度(segment/part)、索引结构(`sidx`、`SegmentTimeline`、`#EXT-X-MAP` 等)与时间对齐(PTS/墙钟),总结 **ExoPlayer / AVPlayer / Web(MSE)** 在 HDR 清单与

2025-09-04 09:02:58 1141 1

原创 HDR 视频伪影排查手册:色带、溢色与亮度跳变

HDR 视频在采集、后期、编码与回放的任何一段出现口径不一致或配置不当,都可能触发**色带、溢色和亮度跳变**等伪影。本文从**成因模型→可观测症状→量化指标→定位流程→修复策略**构建一套工程化清单,覆盖 PQ/HLG 工作流下的 10-bit 量化、色度采样、码控与渲染细节,给出可落地的参数区间、质检门限与自动化脚本建议,帮助团队在不牺牲低延迟与码率预算的前提下稳定消除伪影。

2025-09-03 21:00:00 1127 1

原创 把消息送上 MCU:micro-ROS 传输链路选型与端到端时延测量

micro-ROS 通过 DDS-XRCE 把 ROS 2 能力带到 MCU。链路怎么选、参数怎么配,决定了时延、抖动与丢包上限。本文用工程视角对比 **UDP/以太网、UART/串口、CAN-FD/自定义传输** 的适配要点与性能边界,给出 **Agent/Client 配置模板**、**缓冲与 MTU/分片** 的关键参数,并设计一套可复现的 **端到端时延测量** 方法:在 MCU 与主机双方打时间戳,结合 GPIO/逻分或定时器捕获,统计 p50/p95/p99 与丢包/重传。最后提供优化清单与排错

2025-09-03 07:30:00 1188

原创 HDR 视频后期的参数闭环:LUT、对数曲线与监看转换

面向影视与移动端 HDR 工作流,后期需要把**相机对数曲线**(Log)与**显示端转换**(PQ/HLG/SDR)统一到一套可回归的**参数闭环**:从镜头成像的**场景参照**入手,明确色彩空间与传递特性,采用**1D Shaper + 3D LUT**的结构化管线承载**中灰锚定、knee/roll-off、色域映射与肤色保护**等意图;同时以**EOTF 跟踪、ΔE/Δh°、带状指标**做质检门限,配合监视器校准与 LUT 版本化,形成“**标定 → 求参 → 导出 → 监看 → 纠偏**”的闭环

2025-09-02 21:30:00 1075

原创 把包发到点子上:ROS 2 的 DDS/RTPS 与 QoS (可靠性 / 深度 / Deadline)

QoS 决定了 ROS 2 话题在网络上的**可靠性、时序与资源占用**。本文从 DDS/RTPS 基础出发,围绕 **可靠性(Reliable/BestEffort)**、**历史深度(History Depth)** 与 **Deadline/Liveliness** 三大核心维度,给出可直接落地的 **QoS 配方与调试流程**:常见传感器/控制指令/地图数据的推荐 QoS 组合,端到端时延与丢包的定位方法,Intra-process/共享内存/Loaned messages 的低延迟实践,以及 De

2025-09-02 09:32:42 995 1

原创 HLG10 在直播链路中的低延迟编码与监看实践

HLG10(BT.2100/ARIB STD-B67)以**场景参照**与**系统伽马**的设计,天然适合直播的高亮动态范围和广色域诉求,但在**低延迟**链路中同时维持色彩口径和稳定观感,需要在采集、编码、封装、分发与监看各环节达成严格的一致:正确的 HDR 信令、面向亚秒级延迟的 GOP/HRD 与缓冲设置、CMAF chunk 化传输、端到端色彩管理以及 SDR 兼容路径。本文从工程实现角度给出一套可复现的 HLG10 直播方案与监看要点。

2025-09-01 21:43:32 1345

原创 把时钟拉齐:从 PTP/Chrony 基础到 FreeRTOS/LwIP 的时间对齐实战

分布式机器人与多板协同时,**时间一致性**直接决定传感融合、控制相位与日志追溯的可信度。本文先用工程视角梳理 **PTP/Chrony/NTP** 的差异与选型,然后搭建一套“PC(Chrony)作上位时钟、交换机透明转发、MCU(FreeRTOS+LwIP)端实现时间对齐”的最小闭环。重点给出 **硬件时间戳路径**、**FreeRTOS 任务模型**、**LwIP 端 SNTP/自实现 PTP 客户端的接口层设计**、**软件伺服(PI)校时策略** 与 **Holdover 回退**;最后用 **G

2025-09-01 07:30:00 958 1

原创 HDR 动态元数据生成:场景自适应与质检

面向移动端与内容分发,动态元数据(如 HDR10+ 与 Dolby Vision)通过帧/场景级参数引导目标端的亮度映射和饱和度保护,实现“因画而异”的稳定观感。本文从工程角度给出一套可落地的**元数据生成与质检闭环**:以内容分析(场景切分、APL/MaxRGB 统计、肤色/天空 ROI)驱动曲线求解(中灰锚定、roll-off、自适应饱和保护),再映射到不同标准的元数据字段;同时提供**自动化 QC 脚本与门限**(EOTF 跟踪、ΔE/Δh°、带状/闪烁、元数据与容器一致性),确保编码、封装与回放链路

2025-08-31 21:46:06 1451

原创 HDR 视频肤色稳定:AE 曲线与 AWB 粘滞的协同设计

在移动端 HDR 视频中,肤色稳定性受 **AE 曲线**(亮度分配与高光保护)与 **AWB 粘滞**(色温/增益在时域的稳定)共同影响。若两者缺乏协同,会出现肤色跳变、白点漂移、肤色“塑料感”与高光断层等问题。本文面向研发,提出一套可工程落地的 **AE×AWB 协同策略**:以“中灰锚定 + 高光 roll-off”的 AE 曲线为主线,叠加“面部 ROI 权重 + 色温粘滞/惯性/滞回”的 AWB 控制;在 HLG/PQ 不同 EOTF 下给出参数化方案与时域滤波框架,并以 Δh°、ΔE00、Fli

2025-08-31 10:00:00 784

原创 把时间走准,把环稳住:RTOS 时间基误差与控制环抖动测量实战

控制环“不稳”的根因,往往不是算法,而是**时间基不准**与**调度抖动**。本文面向 MCU/RTOS 场景,给出一套可复现的**时间基误差与控制环抖动测量方法**:以 GPIO 打点 + 逻辑分析仪/示波器做极简外测,用 **硬件定时器输入捕获 / DWT CYCCNT** 做内测与在线统计;系统评估 **vTaskDelay vs vTaskDelayUntil**、Tickless/WFI、SysTick/硬件定时器唤醒、以及中断/ DMA/总线争用对抖动的影响。配套最小代码骨架、统计口径(RMS/

2025-08-30 22:00:00 721 1

原创 HDR→SDR 双轨输出:一致曲线的色域映射与亮度保持

面向移动端与跨平台分发,实际生产往往需要同一母版同时生成 **HDR 主轨**与**SDR 代理轨**。若两条轨道采用不同曲线或不一致的色域映射,容易出现亮度台阶、肤色漂移、天空分层与带状等问题。本文基于研发实践,给出可复用的 **“一致曲线” 双轨策略**:在 **PQ/HLG 母版**上以**一次映射**完成 HDR 渲染,并用**同构 LUT 家族**派生 SDR;在**BT.2020→P3→sRGB**的色域压缩中,通过**色相带限+高光减饱和**与**局部对比分配**保持风格统一;同时给出端到端的

2025-08-30 10:00:00 1622 1

原创 移动端 HLG10、HDR10+、Dolby Vision:拍摄与回放的技术差异

本文聚焦在手机等移动设备上的 HDR 视频工作流,系统对比 **HLG10、HDR10+、Dolby Vision** 在**拍摄链路**(传感器融合、OETF/EOTF 选择、10-bit 采样、主色域/白点、场景/显示映射策略、元数据写入)与**回放链路**(解码器能力、操作系统框架、面板峰值、系统/应用层 Tone Mapping、色彩空间转换)上的关键差异。文章结合当前主流 SoC 与 Android/iOS 的实现特征,解释三种标准在**动态范围表达、元数据粒度、兼容路径(SDR/HDR 互通)、

2025-08-29 21:00:00 1048

原创 移动底盘健康日志器:RTOS 低功耗下的二进制记录与快速回放

面向电池驱动的移动底盘,设计一套“轻量、稳健、可回放”的健康日志器:以统一结构体记录 **线速度 v / 角速度 ω / 相电流 / 温度 / 事件码**,在 RTOS 下采用“ISR/任务只入队 + 单写者二进制落盘”的写路径,结合 **页/簇对齐、批量提交、Tickless/WFI 协同、DMA 合并写**,在低功耗条件下维持高可用;文件侧使用 **段式追加 + WAL 提交 + CRC 尾标记** 与 **A/B 元数据**,保证断电可恢复。提供最小 Python 解析器与回放脚本,验证轨迹与事件对齐

2025-08-29 13:50:49 730 1

原创 低端机 Ultra HDR(JPEG\_R)降级渲染与 SDR 一致性

在大量不具备 HDR 面板或图形算力受限的低端机上,App 仍需要稳定展示与导出来自高端机拍摄的 Ultra HDR(JPEG\_R)素材。本文从工程实践出发,给出**可落地的降级渲染方案**:在**线性域或等效近似**下完成增益图重建,采用**统一的单次 Tone Mapping**与**色相/饱和度保护**,并通过**瓦片化 + 缓存**把内存与耗时控制在低端 SoC 可承受范围。针对低端机容易出现的**带状、块效应、偏色、双重映射**等问题,本文给出**抖动与量化策略**、**一致性评测指标与阈值**

2025-08-28 22:08:00 1060

原创 把参数写稳、把电省住:RTOS 低功耗场景下的本地参数服务器(标定/零偏 KV 持久化)

本文围绕“标定值/零偏/阈值/PID 系数”等小体量但关键的参数,设计一套适配 RTOS 与低功耗设备的本地参数服务器:采用 K/V 结构与命名空间管理,页内 TLV 编码与 CRC 校验,A/B 快照配合单记录 WAL 提交,断电可恢复且占用 RAM/CPU 很小。针对 SPI NOR + LittleFS 与 SD + FatFs 两类介质给出对齐与同步策略;在 Tickless/WFI 下通过字节阈值与关键事件强制提交实现功耗可控;以压缩/整理(compaction)与段式组织降低写放大并做磨损均衡。

2025-08-28 21:29:42 968

原创 第128天:把闪存写“轻”用“久”:RTOS 资源与低功耗下的磨损均衡与写放大控制

电池设备与小型 MCU 的闪存常年承受日志与参数写入,既要省电又要耐久。本文面向 RTOS 场景,系统梳理“写放大从哪来、如何量化、如何在不增加 RAM/CPU 负担的前提下降到可控区间”,并给出在 Tickless/WFI 下的刷盘节奏、DMA 合并写、段式追加与回收(GC)、冷热数据分层、A/B 快照和文件系统参数(LittleFS/FatFs)的配置要点。配套擦除/日与寿命预测的计算口径与监测指标,最后给出验证与回归测试清单,帮助在资源受限与低功耗条件下实现长期稳定的磨损均衡与低写放大。

2025-08-27 21:48:12 1044 1

原创 Ultra HDR(JPEG\_R)文件异常容错与增益图重建

Ultra HDR(JPEG\_R)以“SDR 基底 + 增益图(Gain Map)”携带高动态范围信息。真实项目中常见**文件与元数据异常**(增益图缺失/截断、位深/分辨率声明错误、EXIF/XMP 混乱、通道错配、块损伤等),将直接导致重建失败、画面台阶/偏色或回放崩溃。本文给出一套**工程化容错与重建策略**:以结构/语义双层校验快速定位异常;在不可修复时提供**安全降级**;在可恢复场景下基于**log2 域再估计 + 先验约束(边缘/肤色/天空)**重建增益图;并落实到 Android 端的**

2025-08-27 10:02:26 483 1

毕业论文模版+论文写作技巧+答辩攻略

提供符合本科及硕士论文要求的排版模板,含目录自动生成、图表编号、参考文献格式等,支持 Word 与 Overleaf 双版本,兼容大多数高校标准。

2025-03-31

基于 OpenPose 的人体姿态估计系统(支持深蹲/俯卧撑/硬拉识别 - Python源码+Streamlit界面)图像识别项目源码资源

本资源为一个完整的 基于 OpenPose 的人体姿态估计系统,可用于体育分析、健身指导、康复训练等应用场景。系统集成了深蹲、俯卧撑、硬拉等常见健身动作的识别分析功能,采用 Streamlit 构建界面,操作简单,适合毕业设计、课设演示、AI 项目实战。

2025-03-26

基于SpringBoot+Vue的校园失物招领系统(前后端分离+完整源码+数据库脚本)毕业设计

本项目为一套基于Spring Boot + Vue 3 实现的校园失物招领管理系统,前后端分离架构,功能完善,适合作为毕业设计、课程设计、课题展示系统使用。系统支持用户注册、失物发布、失物列表查询等功能,已集成 MySQL 数据库和 RESTful API 接口,前端使用 Vue3 + Element Plus 构建,界面简洁,部署方便。 技术栈: 后端:Java、SpringBoot、MyBatis、RESTful API 前端:Vue 3、Element Plus、Vue Router、Axios 数据库:MySQL 5.7+ 项目管理:Maven + Vite

2025-03-26

基于TensorFlow的人脸口罩佩戴检测系统(含完整源码 + Streamlit界面 + 摄像头实时识别)适合毕业设计/课设项目

本资源为一套完整的 人脸口罩佩戴检测系统,使用 Python + TensorFlow 实现,适合毕业设计/课设项目,支持图片上传预测、实时摄像头检测、图形界面交互、模型训练与日志记录。 功能亮点: MobileNetV2 搭建轻量级图像分类模型 支持模型训练、验证与日志可视化(TensorBoard) 一键上传图像进行分类预测 实时摄像头检测是否佩戴口罩 Streamlit 构建图形界面,适合演示与部署 完善的项目结构与单元测试支持

2025-03-26

基于TensorFlow的垃圾分类系统源码(MobileNetV2 + Streamlit 可视化 + 可训练)

本资源为一个完整的 垃圾图像分类系统源码包,适合深度学习初学者、课程设计、图像分类项目实践等场景。基于 TensorFlow 2.x 和 MobileNetV2 构建,支持自定义训练、模型推理、图形界面交互,并集成了单元测试和 TensorBoard 可视化功能。 使用预训练模型 MobileNetV2,支持迁移学习 可训练:自动划分训练/验证集、日志保存、模型权重保存 可推理:支持单张图像命令行预测 可视化:支持 Streamlit 图形界面上传图像并展示预测结果 可测试:内置 unittest 测试模块,验证模型输出维度 支持 TensorBoard 日志查看 欢迎下载试用、二次开发!适合做毕业设计、比赛入门项目、图像识别练习、小型可视化系统构建

2025-03-26

基于TensorFlow的图像修复系统源码(含GUI可视化界面 + 训练推理 + 单元测试)

本资源为一个完整的 基于深度学习的图像修复系统源码,使用 TensorFlow 2.x + UNet 构建,支持遮挡去除、破损图像修复、老照片重建等任务。配备 Streamlit 图形界面,可上传图像并手动绘制遮挡区域,点击一键修复,交互体验流畅。 主要功能: 支持训练模型(可加载自定义数据集) 支持推理预测(遮挡区域自动填充) 支持 GUI 可视化操作(Streamlit) 支持 TensorBoard 可视化训练日志 提供单元测试脚本,便于模型验证 项目结构清晰: model/:UNet 模型构建 train.py:训练脚本,支持日志记录 + TensorBoard infer.py:命令行推理脚本 app.py:交互式 Streamlit 网页界面 tests/:单元测试模块 logs/:训练日志目录 附带详细 README.md 中文使用说明 附带 requirements.txt 可一键安装依赖 模型结构兼容自定义掩码图、灰度遮挡、人为绘制等场景

2025-03-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除