几次练手之后,决定进军hard难度
最近的课程主要讲的是分治,就选择了相关的题目。
Given an array nums, we call (i, j) an important reverse pair if i < j and nums[i] > 2*nums[j].
You need to return the number of important reverse pairs in the given array.
Example1:
Input: [1,3,2,3,1]
Output: 2
Example2:
Input: [2,4,3,5,1]
Output: 3
Note:
The length of the given array will not exceed 50,000.
All the numbers in the input array are in the range of 32-bit integer.
是一个逆序对的题目
跟普通的逆序对不一样,这次乘了个2,感觉会带来一些影响。
首先当然是按照朴素的方法写一下试试(毕竟是hard难度,希望不大
果不其然
不出意料的超时了……
分析复杂度,O(
n2
),太慢了,于是思考改进。
耍了小聪明,因为选的是分治类的题目,很自然的往分治的思想上靠。又发现和归并排序其实有点相似,于是转换为如下思想:
每次将给出的数组分为两个部分,每个部分按顺序排好,就可以保证左边的部分的index始终小于右边的部分,从而满足条件i < j。
每个部分处理的时候把值按从小到大顺序排好,这样在合并相邻两个数组的时候(如[x, y], [p,q]),若判断y > 2*q,那么肯定有y>2*p,就可以把p,q都加入计数,如果y不满足,就换到x继续判断p,q,以此类推。
T(n)=2T(n/2)+O(n)
T(n)=O(nlogn) (主定理,即大师定理)
所以,关键就在于始终保证小数组是顺序排列的。然而,因为这道题目有个2倍的关系,如果不额外进行处理,则会出现y < 2*q 且 y > q的情况,就会在合并的时候把数值更大的y排到q的前面,从而对下一层处理产生影响。对此,我的处理是使用一次sort函数保证顺序。
class Solution {
public:
void merge(vector<int> &nums, int left, int mid, int right, int &cnt) {
if (left >= right) return;
int lp = mid;
int rp = right;
vector<int> result;
while (lp >= left && rp >= mid+1) {
long x = nums[lp];
long y = nums[rp];
if (x > 2 * y) {
cnt += (rp-mid);
result.push_back(nums[lp]);
lp--;
} else {
result.push_back(nums[rp]);
rp--;
}
}
while (lp >= left) {
result.push_back(nums[lp]);
lp--;
}
while (rp >= mid+1) {
result.push_back(nums[rp]);
rp--;
}
sort(result.begin(), result.end()); // still have question
for (int i = left, j = 0; i <= right, j < (right-left+1); i++, j++) {
nums[i] = result[j];
}
}
void divide(vector<int> &nums, int left, int right, int &cnt) {
if (left >= right) return;
int mid = (left + right) / 2;
divide(nums, left, mid, cnt);
divide(nums, mid+1, right, cnt);
merge(nums, left, mid, right, cnt);
}
int reversePairs(vector<int>& nums) {
int cnt = 0;
divide(nums, 0, nums.size()-1, cnt);
return cnt;
}
};
然而速度不是很理想。。。
仍然需要改进。
网上看到一个利用二分查找的,研究过后再行改进。不过我感觉问题可能出在sort上,最好能找到其它方法绕过。今天先到这里,第一次hard,难度没有想象中的大,但是遇到了不少麻烦,结果也不是很满意,应该能从中学到更多的东西,需要细细咀嚼。