给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度。
示例 1:
输入: "(()"
输出: 2
解释: 最长有效括号子串为 "()"
示例 2:
输入: ")()())"
输出: 4
解释: 最长有效括号子串为 "()()"
方法1:动态规划
这个问题可以通过动态规划解决。我们定义一个 dp 数组,其中第 i个元素表示以下标为 i的字符结尾的最长有效子字符串的长度。我们将 dp数组全部初始化为 0 。现在,很明显有效的子字符串一定以‘)’结尾。这进一步可以得出结论:以‘(’结尾的子字符串对应的 dp 数组位置上的值必定为 0 。所以说我们只需要更新 ‘)’ 在 dp 数组中对应位置的值。
为了求出 dp 数组,我们每两个字符检查一次,如果满足如下条件:
- s[i]=‘)’且s[i−1]=‘(’,也就是字符串形如"……()",我们可以推出:
dp[i]=dp[i−2]+2
我们可以进行这样的计算,是因为结束部分的 ‘()’ 是一个有效子字符串,并且将之前有效子字符串的长度增加了 2 。
- s[i]=‘)’且s[i−1]=‘)’,也就是字符串形如".......))" ,我们可以推出: 如果s[i−dp[i−1]−1]=‘(’ ,那么
dp[i]=dp[i−1]+dp[i−dp[i−1]−2]+2
这背后的原因是如果倒数第二个‘)’是一个有效子字符串的一部分(记为 sub),对于最后一个‘)’,如果它是一个更长子字符串的一部分,那么它一定有一个对应的‘(’,它的位置在倒数第二个‘)’所在的有效子字符串的前面(也就是 sub 的前面)。
因此,如果子字符串 sub 的前面恰好是‘(’,那么我们就用 2 加上 sub 的长度 dp[i−1] 去更新 dp[i] 。除此以外,我们也会把有效子字符串"(,subs,)"之前的有效子字符串的长度也加上,也就是加上 dp[i−dp[i−1]−2] 。
public class ABCTest{
public int longestValidParentheses(String s) {
int maxans = 0;
int[] dp = new int[s.length()];
for(int i=1;i<s.length();i++) {
if(s.charAt(i)==')') {
if(s.charAt(i-1)=='(') //形如"...()"
dp[i] = (i>=2? dp[i-2]:0)+2;
else if(i-dp[i-1]>0 && s.charAt(i-dp[i-1]-1)=='(')
dp[i] = dp[i-1]+ ((i-dp[i-1])>=2? dp[i-dp[i-1]-2]:0)+2;
//形如"...())"
maxans = Math.max(maxans, dp[i]);
}
}
return maxans;
}
}
复杂度分析
时间复杂度: O(n) 。遍历整个字符串一次,就可以将 dp 数组求出来。
空间复杂度: O(n) 。需要一个大小为 n 的 dp 数组。
方法2:暴力法
在这种方法中,我们考虑给定字符串中每种可能的非空偶数长度子字符串,检查它是否是一个有效括号字符串序列。
为了检查有效性,我们使用栈的方法。
每当我们遇到一个 ‘(’ ,我们把它放在栈顶。对于遇到的每个 ‘)’ ,我们从栈中弹出一个 ‘(’ ,如果栈顶没有 ‘(’,或者遍历完整个子字符串后栈中仍然有元素,那么该子字符串是无效的。这种方法中,我们对每个偶数长度的子字符串都进行判断,并保存目前为止找到的最长的有效子字符串的长度。
例子:
"((())"
(( --> 无效
(( --> 无效
() --> 有效,长度为 2
)) --> 无效
((()--> 无效
(())--> 有效,长度为 4
最长长度为 4
public class ABCTest{
public boolean isValid(String s) {
Stack<Character> stack = new Stack<Character>();
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') {
stack.push('(');
} else if (!stack.empty() && stack.peek() == '(') {
stack.pop(); } else { return false;
}
}
return stack.empty();
}
public int longestValidParentheses(String s) {
int maxlen = 0;
for (int i = 0; i < s.length(); i++) {
for (int j = i + 2; j <= s.length(); j+=2) {
if (isValid(s.substring(i, j))) {
maxlen = Math.max(maxlen, j - i);
}
}
}
return maxlen;
}
}
复杂度分析
时间复杂度: O(n2)。从长度为 n 的字符串产生所有可能的子字符串需要的时间复杂度为 O(n2) 。验证一个长度为 n 的子字符串需要的时间为 O(n) 。
空间复杂度: O(n) 。子字符串的长度最多会需要一个深度为 n 的栈。