- “A function hc:{0,1}∗→{0,1}hc : \{0, 1\}^{*} \to \{0,1\}hc:{0,1}∗→{0,1} is a hard-core predicate of a function fff if hc can be computed in polynomial time, and for every probabilistic polynomial-time algorithm A\mathcal AA there is a negligible function negl.” I cannot understand the meaning of {0,1}∗→{0,1}\{0, 1\}^{*} \to \{0,1\}{0,1}∗→{0,1} and I need you to explain it.
Answer:
In the context of computational complexity theory and cryptography, the notation {0,1}∗\{0, 1\}^*{0,1}∗ represents the set of all binary strings of any length. Each binary string is a sequence of 0s and 1s. The asterisk (*) denotes the Kleene star operator, which indicates that the set includes strings of any possible length, including the empty string.
So, {0,1}∗\{0, 1\}^*{0,1}∗ represents an infinite set of binary strings that can be of any length, including zero. For example, {0,1}∗\{0, 1\}^*{0,1}∗ includes strings such as “0”, “1”, “1010”, “001001”, and so on.
In the given context, the function hc:{0,1}∗→{0,1}hc : \{0, 1\}^* \to \{0,1\}hc:{0,1}∗→{0,1} is a function that takes as input a binary string from the set {0,1}∗\{0, 1\}^*{0,1}∗ and produces a binary output, either 0 or 1. The function hchchc is defined to be a hard-core predicate of another function fff if it satisfies certain properties, as mentioned in your statement.
Essentially, hchchc is a computationally hard function that serves as a way to extract some information about the input of a function fff that would otherwise be difficult to compute. It acts as a “hard-core” property that reveals some aspects of fff while maintaining its computational hardness.
The statement you provided says that hchchc can be computed efficiently (in polynomial time) and that for any probabilistic polynomial-time algorithm A\mathcal AA (an algorithm that runs in polynomial time and can make random choices), there is a negligible function negl\text{negl}negl such that A\mathcal AA cannot predict the value of hchchc with non-negligible advantage (the advantage is negligible when it approaches zero as the input size increases).
In summary, the notation {0,1}∗\{0, 1\}^*{0,1}∗ represents the set of all binary strings, and hc:{0,1}∗→{0,1}hc : \{0, 1\}^* \to \{0,1\}hc:{0,1}∗→{0,1} denotes a function that takes binary strings as input and produces a binary output…

被折叠的 条评论
为什么被折叠?



