数学建模竞赛真的是模型解题一般,但是论文出彩而获奖的吗?

文章探讨了数学建模竞赛中模型选择、论文撰写的重要性和技巧,强调了模型创新、论文结构、摘要撰写、排版美观、模型假设和检验的必要性,提倡使用适合而非复杂的模型,并提醒参赛者论文的整体呈现至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近,数乐君发现有同学会有这样的问题:在数学建模国赛中,会因为参赛团队的模型解题一般,但论文写得非常精彩而获奖吗?

是的,确实会存在这样的情况。

我们都知道数学建模竞赛最终都是以提交成品论文的形式来完成比赛,因此最终论文的呈现其实是将参赛团队的所有努力和心血融合而成,也是评阅老师最直观感受到参赛团队水平和思维的一种形式,论文的重要性自然不言而喻。

在模型方面,不管是什么比赛,其实真的很少用书上的基础模型,如果你用了说明你的模型不够具有创新性。大家可以用搜索引擎根据问题去找更实用的模型,或者队伍水平高,可以自制创新想法的模型,最重要的是注意细节——细节能突出针对特定问题本质的数学的分析。

大家可以试想一下,如果参赛团队的解题思维其实很好,使用的模型也很高大上,但是论文思路混乱,逻辑模糊,并且图表等都一般,谈不上美观。这样也许在解题思维上会比其他参赛团队更胜一筹,但很明显,评阅老师不会很贴心的特意去关注你的解题思路,去推敲参赛团队的想法,他们只会在整体的论文上,进行评阅把关。

因此论文整体的呈现效果非常重要,但与此同时并不是解题思路和模型的使用并不重要,其实是相辅相成的,模型解题是论文中的重要部分,而论文在最后的参赛以及评阅过程中又起一定的决定作用,因此两者其实都不能忽视,有一才有二,各有侧重。

那说到这里,数学建模竞赛中常用且好用的算法模型有哪些?以及一篇评阅老师眼中的好论文该怎么写?数乐君这就来给大家上干货!

01数学建模重要模型

一、分类模型

1、距离聚类(系统聚类)(常用,需掌握)

优点

①将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类

②是一种探索性的分析方法,分类结果不一定相同

例如:主要用于样本数据的初步处理

缺点

(1)用户需要先指定K,但到底指定K为多少是不知道的。

(2)对初值敏感。不同的初始化中心很容易导致不同的聚类结果。

(3)对于孤立点数据敏感。

2、关联性聚类(常用,需掌握)

3、层次聚类,密度聚类(DBSCAN)

6、贝叶斯判别(统计判别方法,需掌握)

7、费舍尔判别(训练的样本比较多,需掌握)

8、模糊识别(分好类的数据点比较少)

二、预测模型

1、灰色预测模型(必须掌握)

满足两个条件可用:

①数据样本点个数少,6-15个

②数据呈现指数或曲线的形式

例如:可以通过极值点和稳定点来预测下一次稳

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值