CornerNet 详解

CornerNet是anchor-free、one-stage的一种目标检测算法,其baseline是CenterNet。 CenterNet 基于CenterNet的算法,是预测左上与右下两个角点的位置。每次预测两个heatmap(两个脚点的)、offset(从heatmap到原图映射)...

2019-06-13 19:16:00

阅读数 7

评论数 0

Pytorch 模型fusion

模型A和模型B,两个模型共享backbone,现需要将两模型共享backbone参数 backbone为resnet18 步骤: 1.训练单独的A模型 2.load第一步的模型,将backbone中的某些层之前lr调小,之后的lr不变,训练B模型 3.load第二步的模型,训练A模型...

2019-04-18 14:57:06

阅读数 21

评论数 0

421. 数组中两个数的最大异或值

下午花了好久理解这道题。。。 设置的变量: set:一个set用于存出现的1 mask:用来移位 temp:用来记录上一次的最大值,加上这次位置的1 max:当前最大值 这个题用了移位的方法,c++中int位4个字节,32位,而刚好规定数组中最大元素为2^31,所以可以使用一个移位的m...

2019-03-26 18:06:38

阅读数 48

评论数 0

pytorch的一些用法

日志: https://juejin.im/post/5bc2bd3a5188255c94465d31   lr: optimizer用param_groups来管理参数[optimizer.param_groups],其中保存了参数组和学习率动量等,以dict的形式保存,如optimiz...

2019-02-21 11:04:50

阅读数 30

评论数 0

剑指offer 40

链接:https://www.nowcoder.com/questionTerminal/6a296eb82cf844ca8539b57c23e6e9bf 来源:牛客网 class Solution { public: vector<int>...

2018-12-10 00:23:34

阅读数 23

评论数 0

Large Kernel Matters论文理解

    Large Kernel Matters ——Improve Semantic Segmentation by Global Convolutional Network 发表日期:8 May 2017 本文主要提出两种结构,全局卷积网络(Global Convolutional N...

2018-12-05 10:49:19

阅读数 114

评论数 0

RefineNet论文理解

RefineNet block的作用是把不同分辨率的特征图融合。 除了RefineNet-4是单输入,其他全是二输入。主要组成部分是Residual convolution uint(RCU)、Multi-resolution fusion、Chained residual pooling、...

2018-12-04 20:02:00

阅读数 66

评论数 0

MobileNets论文中可分离卷积

Depthwise Convolution mobilenet_v1 计算flop 原本的卷积操作因式分解为一个depthwise convolution和一个1*1的卷积(pointwise convolution),简单讲就是将原来一个卷积层分成两个卷积层,其中前面一个卷积层的f...

2018-12-04 19:29:00

阅读数 33

评论数 0

Deeplab系列(V1\V2\V3)论文理解

目录 Version1 Version2 Version3 Version3+   Version1 Pretrained model and prototxt 以前网络存在的问题: 重复的池化和下采样层组合有平移不变形,其增强了数据分层抽象的能力,但是会阻碍低级的视觉任务(精确...

2018-12-04 17:08:48

阅读数 423

评论数 0

SegNet论文理解

SegNet-Turioal 包括prototxt等 SegNet的caffe源码   本文也用了vgg16的结构改造的,和U-Net对比,U-Net没有用到conv5和pool5,但是SegNet用到了所有预训练的卷积层权重。 当时现有的semantic segmentation的问题在...

2018-12-04 11:56:13

阅读数 205

评论数 0

U-Net论文

      采用了多尺度的方式,该论文提出是用来做医学图像细胞分割的。提出少量样本即可实现训练。 1.这个模型的输入image进行了边界镜像处理。 2.loss更改 因为这里医学图像的细胞边界容易分割错误,因此给边界的细胞线加了权重。 权重: 分类(softmax): 变...

2018-12-03 22:24:54

阅读数 82

评论数 0

FCN论文理解

代码参考 准备接触一下图像分割,首先从FCN看起。 FCN中主要是进行encoder-decoder的过程,将图像输入conv层得到feature map,再通过upsampling的方式,deconv为和如图图像一样的大小。 以vgg16为例,pool层一共有5个,每进行一次pooling...

2018-12-03 18:04:22

阅读数 68

评论数 0

image caption(四)文章及代码的一些解析

show and tell是直接调用的LSTM https://www.cnblogs.com/wangduo/p/6773601.html?utm_source=itdadao&utm_medium=referral   1.LSTM网络 LSTM网络包括的结...

2018-11-30 17:20:03

阅读数 317

评论数 0

tensorflow学习

1.初始化 所有变量同时初始化: init_op = tf.global_variables_initializer()() sess.run(init_op) 2.collection集合 在Tensorflow中,所有的变量都会被自动加入GraphKeys.VARIABLES这个集合...

2018-11-30 15:43:19

阅读数 23

评论数 0

Image Caption(三) 一些补充

构建LSTM模型: #定义一个LSTM_cell lstm_cell = rnn.BasicLSTMCell(      hidden_size,       forget_bias = 1.0,       state_is_tuple = True  ) lstm_cell = rnn.D...

2018-11-24 11:52:50

阅读数 88

评论数 0

Image Caption(二) 论文阅读及测试代码

论文为Deep Visual-Semantic Alignments for Generating Image Descriptions,是李飞飞在CVPR2015的论文。 实现代码为neuraltalk2,为在GPU上实现。 将代码clone下来,并下载model及测试图,按照步骤即可实现e...

2018-11-21 19:32:16

阅读数 185

评论数 0

Image Caption(一) 论文及理解

准备开始读一下Image Caption,先记录一下对论文的理解,一些公式没有记录下来,在论文中可查。 目录 1.Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translat...

2018-11-20 19:10:29

阅读数 149

评论数 0

深度学习及机器学习的一些问题(面试)

1.为什么正则化可以防止过拟合 参考链接   深度学习面试100题: 深度学习面试100题(第1-5题):经典常考点CNN 深度学习面试100题(第6-10题) 深度学习面试100题(第11-15题) 深度学习面试100题(第16-20题) 深度学习面试100题(第21-25题) ...

2018-11-19 15:55:50

阅读数 367

评论数 0

深度学习一些网络

一、轻量化网络 ShuffleNet MobileNet   二、语义分割网络 FCN U-Net

2018-11-19 14:32:58

阅读数 28

评论数 0

caffe常见的一些错误

跑caffe有些常见的问题,都是工程问题,找起来很麻烦很费时间,为了防止时间久了遗忘解决方法,在此记录。 1.出现".py undefine symbol caffe5Zxxxxxx"这种乱七八糟的乱码但是又包含了caffe,这种情况一般是pycaffe的地址...

2018-11-09 20:39:59

阅读数 19

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭