CV基础
齐小易不易
这个作者很懒,什么都没留下…
展开
-
CV-图像噪声&图像滤波
图像噪声噪声的作用:可以在训练数据集少的情况下使用各种噪声多模糊出几张图像作为训练集,从而提升模型的鲁棒性信噪比(SNR)信号与噪声的比率,信噪比越大,噪声越小常见噪声高斯噪声高斯噪声是指它的概率密度函数服从高斯分布的一类噪声产生的原因:图像传感器在拍摄时不够明亮、亮度不够均匀电路元器件自身噪声和相互影响图像传感器长期工作,温度过高公式:Pout = Pin + XMeans + sigma * G(d)d为一个线性的随机数,G(d)是随机数的高斯分布随机值高原创 2020-12-29 22:12:45 · 1009 阅读 · 0 评论 -
CV-图像增强
图像增强图像增强是一种图像处理的常用方式,可以使改变图像的对比度、亮度等作用关于图像的处理方式:加噪,滤波,图像增强应用场景:对图像进行预处理,增加机器学习的鲁棒性在图像训练集较少的情况下,可以通过图像增强或加噪滤波等方式多模糊出几张图片供训练使用,其目的也是增加模型的鲁棒性图像增强技术分类点处理技术:只对单个像素进行处理领域处理技术:对像素点及其周围的点进行处理(使用卷积核)点处理技术线性变换作用:对图像的对比度和亮度进行调整公式:y = a*x + b参数a影原创 2020-12-28 22:13:07 · 684 阅读 · 0 评论 -
CV-聚类算法
聚类算法分类与聚类分类说起聚类,先与分类做一个对比,以便我们理解分类是从特定数据集中挖掘模式,做出判断的过程分类学习的过程:训练数据集中存在一个类标记号,判断他是正向数据还是,负向数据然后对数据集进行学习训练,并构建一个训练模型通过模型对测试数据进行预测,并计算其结果聚类聚类是将数据集中很相似的数据成员放在一起聚类的样本属性:有序属性:能够用精确数字表示的属性,比如:梨的甜度(0.1,0.2等)无序属性:男、女、人妖等此类不能通过一个数字表示的属性聚类算法的分类原创 2020-12-24 12:13:19 · 449 阅读 · 1 评论 -
CV-边缘提取
什么是边缘?图像的边缘时指图像局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看做是一个阶跃,既从一个灰度值很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值边缘有正负之分,就像导数有正值也有负值一样边缘检测步骤:滤波:边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数常对噪声很敏感,因此必须采用滤波器来改善与噪声有关的边缘检测器的性能。增强:增强边缘的基础就是确定图像各点领域强度发变化值。增强算法可以将图像灰度点邻域强度值有显著变化的点凸显出来。在具体编程实现时,可通过计原创 2020-12-22 13:43:54 · 484 阅读 · 0 评论