条件概率与全概率公式
条件概率:
P
(
A
∣
B
)
=
P
(
A
B
)
P
(
B
)
P(A|B)=\frac{P(AB)}{P(B)}
P(A∣B)=P(B)P(AB)全概率公式:
P
(
B
)
=
∑
i
=
1
∞
P
(
A
i
B
)
=
∑
i
=
1
∞
P
(
A
i
)
P
(
B
∣
A
i
)
P(B)=\sum_{i=1}^{\infty}P(A_iB)=\sum_{i=1}^{\infty}P(A_i)P(B|A_i)
P(B)=i=1∑∞P(AiB)=i=1∑∞P(Ai)P(B∣Ai)简化版的全概率公式:
P
(
B
)
=
P
(
A
B
)
+
P
(
A
ˉ
B
)
=
P
(
A
)
P
(
B
∣
A
)
+
P
(
A
ˉ
)
P
(
B
∣
A
ˉ
)
P(B)=P(AB)+P(\bar AB)=P(A)P(B|A)+P(\bar A)P(B|\bar A)
P(B)=P(AB)+P(AˉB)=P(A)P(B∣A)+P(Aˉ)P(B∣Aˉ)
【例】:人患癌症的概率为1/1000.假设有一台癌症诊断仪S1,通过对它以往的诊断记录的分析,如果患者确实患有癌症它的确诊率为90%,如果患者没有癌症,被诊断成癌症的概率是10%。某人在被诊断为癌症后,他真正患癌症的概率是多少?
【解】:把该人被诊断为癌症记为事件
X
X
X,没有被诊断为癌症记为事件
X
ˉ
\bar X
Xˉ,在自然人群中患有癌症记为事件
Y
Y
Y,没有患癌症记为事件
Y
ˉ
\bar Y
Yˉ。依题意得
P
(
X
∣
Y
)
=
90
%
P(X|Y)=90\%
P(X∣Y)=90%
P
(
X
∣
Y
ˉ
)
=
10
%
P(X|\bar Y)=10\%
P(X∣Yˉ)=10%
P
(
Y
)
=
1
/
1000
P(Y)=1/1000
P(Y)=1/1000
P
(
Y
ˉ
)
=
999
/
1000
P(\bar Y)=999/1000
P(Yˉ)=999/1000则
P
(
X
)
=
P
(
Y
)
P
(
X
∣
Y
)
+
P
(
Y
ˉ
)
P
(
X
∣
Y
ˉ
)
=
100.8
/
1000
P(X)=P(Y)P(X|Y)+P(\bar Y)P(X|\bar Y)=100.8/1000
P(X)=P(Y)P(X∣Y)+P(Yˉ)P(X∣Yˉ)=100.8/1000
P
(
Y
∣
X
)
=
P
(
X
Y
)
P
(
X
)
=
P
(
Y
)
P
(
X
∣
Y
)
P
(
X
)
=
1
/
112
P(Y|X)=\frac{P(XY)}{P(X)}=\frac{P(Y)P(X|Y)}{P(X)}=1/112
P(Y∣X)=P(X)P(XY)=P(X)P(Y)P(X∣Y)=1/112
【例】H同学每天乘公交上学,早上睡过头或遇到堵车都会迟到;H早上睡过头的概率为0.2,路上遇到堵车的概率为0.5;若某天早上H迟到了,那么以下推测正确的有()。
a) 今天H早上睡过头了的概率大于0.2
b) 今天H早上遇到堵车的概率小于0.5
【解】:a。
记X表示睡过头,Y表示遇到堵车,Z表示迟到
P
(
Z
)
=
1
−
P
(
X
ˉ
Y
ˉ
)
=
1
−
P
(
X
ˉ
)
P
(
Y
ˉ
)
=
1
−
0.4
=
0.6
P(Z)=1-P(\bar X \bar Y)=1-P(\bar X)P(\bar Y)=1-0.4=0.6
P(Z)=1−P(XˉYˉ)=1−P(Xˉ)P(Yˉ)=1−0.4=0.6
P
(
X
∣
Z
)
=
P
(
X
Z
)
P
(
Z
)
=
P
(
Z
∣
X
)
P
(
X
)
P
(
Z
)
=
0.2
0.6
P(X|Z)=\frac{P(XZ)}{P(Z)}=\frac{P(Z|X)P(X)}{P(Z)}=\frac{0.2}{0.6}
P(X∣Z)=P(Z)P(XZ)=P(Z)P(Z∣X)P(X)=0.60.2
P
(
Y
∣
Z
)
=
P
(
Y
Z
)
P
(
Z
)
=
P
(
Z
∣
Y
)
P
(
X
)
P
(
Z
)
=
0.5
0.6
P(Y|Z)=\frac{P(YZ)}{P(Z)}=\frac{P(Z|Y)P(X)}{P(Z)}=\frac{0.5}{0.6}
P(Y∣Z)=P(Z)P(YZ)=P(Z)P(Z∣Y)P(X)=0.60.5
概率的加法公式及推论
概率的加法公式:
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
B
)
P(A\cup B)=P(A)+P(B)-P(AB)
P(A∪B)=P(A)+P(B)−P(AB)推论1:
P
(
A
∪
B
)
≤
P
(
A
)
+
P
(
B
)
P(A\cup B)\le P(A)+P(B)
P(A∪B)≤P(A)+P(B)推论2:
P
(
A
B
)
≥
P
(
A
)
+
P
(
B
)
−
1
P(AB)\ge P(A)+P(B)-1
P(AB)≥P(A)+P(B)−1
【例】:若AB为任意两个随机事件,则()
a) P(AB)>=(P(A)+P(B))/2
b) P(AB)<=P(A)P(B)
c) P(AB)<=(P(A)+P(B))/2
d) P(AB)>=P(A)P(B)
【解】c。
由P(AB)定义可知:P(AB)<=P(A),P(AB)<=P(B);相加,除以2得c。
关于b,当A和B是包含关系时错误。
关于d,当A和B互斥时P(AB)=0,P(A)P(B)>=0
独立和互斥
- 互斥,即两个事件不能同时发生。即交集为空,但可能会产生相互影响(比如A发生,B就一定不发生了)。
- 独立,即事件之间的发生互不影响,但可能会同时发生。
- 独立事件可能是互斥事件,而互斥事件一定不是独立事件。