《概率统计》知识点(持续更新……)

条件概率与全概率公式

条件概率: P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)=\frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)全概率公式: P ( B ) = ∑ i = 1 ∞ P ( A i B ) = ∑ i = 1 ∞ P ( A i ) P ( B ∣ A i ) P(B)=\sum_{i=1}^{\infty}P(A_iB)=\sum_{i=1}^{\infty}P(A_i)P(B|A_i) P(B)=i=1P(AiB)=i=1P(Ai)P(BAi)简化版的全概率公式: P ( B ) = P ( A B ) + P ( A ˉ B ) = P ( A ) P ( B ∣ A ) + P ( A ˉ ) P ( B ∣ A ˉ ) P(B)=P(AB)+P(\bar AB)=P(A)P(B|A)+P(\bar A)P(B|\bar A) P(B)=P(AB)+P(AˉB)=P(A)P(BA)+P(Aˉ)P(BAˉ)
【例】:人患癌症的概率为1/1000.假设有一台癌症诊断仪S1,通过对它以往的诊断记录的分析,如果患者确实患有癌症它的确诊率为90%,如果患者没有癌症,被诊断成癌症的概率是10%。某人在被诊断为癌症后,他真正患癌症的概率是多少?
【解】:把该人被诊断为癌症记为事件 X X X,没有被诊断为癌症记为事件 X ˉ \bar X Xˉ,在自然人群中患有癌症记为事件 Y Y Y,没有患癌症记为事件 Y ˉ \bar Y Yˉ。依题意得 P ( X ∣ Y ) = 90 % P(X|Y)=90\% P(XY)=90% P ( X ∣ Y ˉ ) = 10 % P(X|\bar Y)=10\% P(XYˉ)=10% P ( Y ) = 1 / 1000 P(Y)=1/1000 P(Y)=1/1000 P ( Y ˉ ) = 999 / 1000 P(\bar Y)=999/1000 P(Yˉ)=999/1000 P ( X ) = P ( Y ) P ( X ∣ Y ) + P ( Y ˉ ) P ( X ∣ Y ˉ ) = 100.8 / 1000 P(X)=P(Y)P(X|Y)+P(\bar Y)P(X|\bar Y)=100.8/1000 P(X)=P(Y)P(XY)+P(Yˉ)P(XYˉ)=100.8/1000 P ( Y ∣ X ) = P ( X Y ) P ( X ) = P ( Y ) P ( X ∣ Y ) P ( X ) = 1 / 112 P(Y|X)=\frac{P(XY)}{P(X)}=\frac{P(Y)P(X|Y)}{P(X)}=1/112 P(YX)=P(X)P(XY)=P(X)P(Y)P(XY)=1/112
【例】H同学每天乘公交上学,早上睡过头或遇到堵车都会迟到;H早上睡过头的概率为0.2,路上遇到堵车的概率为0.5;若某天早上H迟到了,那么以下推测正确的有()。
a) 今天H早上睡过头了的概率大于0.2
b) 今天H早上遇到堵车的概率小于0.5
【解】:a。
记X表示睡过头,Y表示遇到堵车,Z表示迟到 P ( Z ) = 1 − P ( X ˉ Y ˉ ) = 1 − P ( X ˉ ) P ( Y ˉ ) = 1 − 0.4 = 0.6 P(Z)=1-P(\bar X \bar Y)=1-P(\bar X)P(\bar Y)=1-0.4=0.6 P(Z)=1P(XˉYˉ)=1P(Xˉ)P(Yˉ)=10.4=0.6 P ( X ∣ Z ) = P ( X Z ) P ( Z ) = P ( Z ∣ X ) P ( X ) P ( Z ) = 0.2 0.6 P(X|Z)=\frac{P(XZ)}{P(Z)}=\frac{P(Z|X)P(X)}{P(Z)}=\frac{0.2}{0.6} P(XZ)=P(Z)P(XZ)=P(Z)P(ZX)P(X)=0.60.2 P ( Y ∣ Z ) = P ( Y Z ) P ( Z ) = P ( Z ∣ Y ) P ( X ) P ( Z ) = 0.5 0.6 P(Y|Z)=\frac{P(YZ)}{P(Z)}=\frac{P(Z|Y)P(X)}{P(Z)}=\frac{0.5}{0.6} P(YZ)=P(Z)P(YZ)=P(Z)P(ZY)P(X)=0.60.5

概率的加法公式及推论

概率的加法公式: P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)推论1: P ( A ∪ B ) ≤ P ( A ) + P ( B ) P(A\cup B)\le P(A)+P(B) P(AB)P(A)+P(B)推论2: P ( A B ) ≥ P ( A ) + P ( B ) − 1 P(AB)\ge P(A)+P(B)-1 P(AB)P(A)+P(B)1
【例】:若AB为任意两个随机事件,则()
a) P(AB)>=(P(A)+P(B))/2
b) P(AB)<=P(A)P(B)
c) P(AB)<=(P(A)+P(B))/2
d) P(AB)>=P(A)P(B)
【解】c。
由P(AB)定义可知:P(AB)<=P(A),P(AB)<=P(B);相加,除以2得c。
关于b,当A和B是包含关系时错误。
关于d,当A和B互斥时P(AB)=0,P(A)P(B)>=0

独立和互斥

  • 互斥,即两个事件不能同时发生。即交集为空,但可能会产生相互影响(比如A发生,B就一定不发生了)。
  • 独立,即事件之间的发生互不影响,但可能会同时发生。
  • 独立事件可能是互斥事件,而互斥事件一定不是独立事件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值