一些数学基础概念记录

本文记录了矩阵的基本操作,如转置和逆;深入探讨了图论,包括有向图的定义、强连通性及加权平衡、详细平衡的概念;介绍了凸分析中的凸集、凸函数及其性质,如强凸性和光滑性;并概述了收敛性分析的不同类型,以及紧集和利普希茨连续性的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

符号描述

给定一个矩阵 A A A A T A^T AT 表示它的转置, A − 1 A^{-1} A1表示它的逆。 矩阵 A A A B B B 的 Kronecker积表示为 A ⊗ B A\otimes B AB I n I_n In表示维度为 n × n n \times n n×n的单位矩阵。 1 n 1_n 1n 0 n 0_n 0n表示每个子式分别为 1 1 1 0 0 0的列向量。

图论

  1. G = ( V , E ) \mathcal{G} = (\mathcal{V},\mathcal{E}) G=(V,E)表示一个有向图,其中 V \mathcal{V} V表示节点集, E \mathcal{E} E表示边集。从节点 i i i到节点 j j j的有向边表示为 ( i , j ) ∈ E (i,j) \in \mathcal{E} (i,j)E. 当且仅当 ( i , j ) ∈ E (i,j) \in \mathcal{E} (i,j)E等价于 ( j , i ) ∈ E (j,i) \in \mathcal{E} (j,i)E时,有向图是无向的。为了简化符号,假设有向图没有自回路,即 ( i , i ) ∉ E (i,i)\notin \mathcal{E} (i,i)/E,但是节点 i i i有权访问自身的信息。从节点 i 1 i_1 i1 i k i_k ik的有向路径是一系列节点 { i 1 , … , i k − 1 } \{i_1,\dots,i_{k-1}\} { i1,,ik1}使得 ( i j , i j + 1 ) ∈ E (i_j,i_{j+1})\in\mathcal{E} (ij,ij+1)E,其中 j = 1 , … , k − 1 j=1,\dots,k-1 j=1,,k
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值