符号描述
给定一个矩阵 A A A, A T A^T AT 表示它的转置, A − 1 A^{-1} A−1表示它的逆。 矩阵 A A A 和 B B B 的 Kronecker积表示为 A ⊗ B A\otimes B A⊗B。 I n I_n In表示维度为 n × n n \times n n×n的单位矩阵。 1 n 1_n 1n 和 0 n 0_n 0n表示每个子式分别为 1 1 1和 0 0 0的列向量。
图论
- G = ( V , E ) \mathcal{G} = (\mathcal{V},\mathcal{E}) G=(V,E)表示一个有向图,其中 V \mathcal{V} V表示节点集, E \mathcal{E} E表示边集。从节点 i i i到节点 j j j的有向边表示为 ( i , j ) ∈ E (i,j) \in \mathcal{E} (i,j)∈E. 当且仅当 ( i , j ) ∈ E (i,j) \in \mathcal{E} (i,j)∈E等价于 ( j , i ) ∈ E (j,i) \in \mathcal{E} (j,i)∈E时,有向图是无向的。为了简化符号,假设有向图没有自回路,即 ( i , i ) ∉ E (i,i)\notin \mathcal{E} (i,i)∈/E,但是节点 i i i有权访问自身的信息。从节点 i 1 i_1 i1到 i k i_k ik的有向路径是一系列节点 { i 1 , … , i k − 1 } \{i_1,\dots,i_{k-1}\} { i1,…,ik−1}使得 ( i j , i j + 1 ) ∈ E (i_j,i_{j+1})\in\mathcal{E} (ij,ij+1)∈E,其中 j = 1 , … , k − 1 j=1,\dots,k-1 j=1,…,k−