二叉树 常用知识学习

前言

是数据结构中的重中之重,尤其以各类二叉树为学习的难点。一直以来,对于树的掌握都是模棱两可的状态,现在希望通过写一个关于二叉树的专题系列。在学习与总结的同时更加深入的了解掌握二叉树。本系列文章将着重介绍一般二叉树、完全二叉树、满二叉树、线索二叉树霍夫曼树二叉排序树、平衡二叉树、红黑树、B树。希望各位读者能够关注专题,并给出相应意见,通过系列的学习做到心中有“树”。

1 重点概念

1.1 结点概念

结点是数据结构中的基础,是构成复杂数据结构的基本组成单位。

1.2 树结点声明

本系列文章中提及的结点专指树的结点。例如:结点A在图中表示为:

 

2

2.1 定义

树(Tree)是n(n>=0)个结点的有限集。n=0时称为空树。在任意一颗非空树中:
1)有且仅有一个特定的称为根(Root)的结点;
2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、......、Tn,其中每一个集合本身又是一棵树,并且称为根的子树。

此外,树的定义还需要强调以下两点:
1)n>0时根结点是唯一的,不可能存在多个根结点,数据结构中的树只能有一个根结点。
2)m>0时,子树的个数没有限制,但它们一定是互不相交的。
示例树:
图2.1为一棵普通的树:

 

 

由树的定义可以看出,树的定义使用了递归的方式。递归在树的学习过程中起着重要作用,如果对于递归不是十分了解,建议先看看递归算法

2.2 结点的度

结点拥有的子树数目称为结点的
图2.2中标注了图2.1所示树的各个结点的度。

 

2.3 结点关系

结点子树的根结点为该结点的孩子结点。相应该结点称为孩子结点的双亲结点
图2.2中,A为B的双亲结点,B为A的孩子结点。
同一个双亲结点的孩子结点之间互称兄弟结点
图2.2中,结点B与结点C互为兄弟结点。

2.4 结点层次

从根开始定义起,根为第一层,根的孩子为第二层,以此类推。
图2.3表示了图2.1所示树的层次关系

2.5 树的深度

树中结点的最大层次数称为树的深度或高度。图2.1所示树的深度为4。

3 二叉树

3.1 定义

二叉树是n(n>=0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树组成。
图3.1展示了一棵普通二叉树:

 

3.2 二叉树特点

由二叉树定义以及图示分析得出二叉树有以下特点:
1)每个结点最多有两颗子树,所以二叉树中不存在度大于2的结点。
2)左子树和右子树是有顺序的,次序不能任意颠倒。
3)即使树中某结点只有一棵子树,也要区分它是左子树还是右子树。

3.3 二叉树性质

1)在二叉树的第i层上最多有2i-1 个节点 。(i>=1)
2)二叉树中如果深度为k,那么最多有2k-1个节点。(k>=1)
3)n0=n2+1 n0表示度数为0的节点数,n2表示度数为2的节点数。
4)在完全二叉树中,具有n个节点的完全二叉树的深度为[log2n]+1,其中[log2n]是向下取整。
5)若对含 n 个结点的完全二叉树从上到下且从左至右进行 1 至 n 的编号,则对完全二叉树中任意一个编号为 i 的结点有如下特性:

(1) 若 i=1,则该结点是二叉树的根,无双亲, 否则,编号为 [i/2] 的结点为其双亲结点;
(2) 若 2i>n,则该结点无左孩子, 否则,编号为 2i 的结点为其左孩子结点;
(3) 若 2i+1>n,则该结点无右孩子结点, 否则,编号为2i+1 的结点为其右孩子结点。

3.4 斜树

斜树:所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树。

 

 

3.5 满二叉树

满二叉树:在一棵二叉树中。如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。
满二叉树的特点有:
1)叶子只能出现在最下一层。出现在其它层就不可能达成平衡。
2)非叶子结点的度一定是2。
3)在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多。

 

3.6 完全二叉树

完全二叉树:对一颗具有n个结点的二叉树按层编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。
图3.5展示一棵完全二叉树


特点
1)叶子结点只能出现在最下层和次下层。
2)最下层的叶子结点集中在树的左部。
3)倒数第二层若存在叶子结点,一定在右部连续位置。
4)如果结点度为1,则该结点只有左孩子,即没有右子树。
5)同样结点数目的二叉树,完全二叉树深度最小。
:满二叉树一定是完全二叉树,但反过来不一定成立。

3.7 二叉树的存储结构

3.7.1 顺序存储

二叉树的顺序存储结构就是使用一维数组存储二叉树中的结点,并且结点的存储位置,就是数组的下标索引。

图3.6所示的一棵完全二叉树采用顺序存储方式,如图3.7表示:

由图3.7可以看出,当二叉树为完全二叉树时,结点数刚好填满数组。
那么当二叉树不为完全二叉树时,采用顺序存储形式如何呢?例如:对于图3.8描述的二叉树:


其中浅色结点表示结点不存在。那么图3.8所示的二叉树的顺序存储结构如图3.9所示:

其中,∧表示数组中此位置没有存储结点。此时可以发现,顺序存储结构中已经出现了空间浪费的情况。
那么对于图3.3所示的右斜树极端情况对应的顺序存储结构如图3.10所示:

由图3.10可以看出,对于这种右斜树极端情况,采用顺序存储的方式是十分浪费空间的。因此,顺序存储一般适用于完全二叉树。

3.7.2 二叉链表

既然顺序存储不能满足二叉树的存储需求,那么考虑采用链式存储。由二叉树定义可知,二叉树的每个结点最多有两个孩子。因此,可以将结点数据结构定义为一个数据和两个指针域。表示方式如图3.11所示:

定义结点代码:

typedef struct BiTNode{

    TElemType data;//数据

    struct BiTNode *lchild, *rchild;//左右孩子指针

} BiTNode, *BiTree;

则图3.6所示的二叉树可以采用图3.12表示。

图3.12中采用一种链表结构存储二叉树,这种链表称为二叉链表。

3.8 二叉树遍历

二叉树的遍历一个重点考查的知识点。

3.8.1 定义

二叉树的遍历是指从二叉树的根结点出发,按照某种次序依次访问二叉树中的所有结点,使得每个结点被访问一次,且仅被访问一次。
二叉树的访问次序可以分为四种:

前序遍历
中序遍历
后序遍历
层序遍历

3.8.2 前序遍历

前序遍历通俗的说就是从二叉树的根结点出发,当第一次到达结点时就输出结点数据,按照先向左在向右的方向访问。

3.13


图3.13所示二叉树访问如下:

从根结点出发,则第一次到达结点A,故输出A;
继续向左访问,第一次访问结点B,故输出B;
按照同样规则,输出D,输出H;
当到达叶子结点H,返回到D,此时已经是第二次到达D,故不在输出D,进而向D右子树访问,D右子树不为空,则访问至I,第一次到达I,则输出I;
I为叶子结点,则返回到D,D左右子树已经访问完毕,则返回到B,进而到B右子树,第一次到达E,故输出E;
向E左子树,故输出J;
按照同样的访问规则,继续输出C、F、G;

则3.13所示二叉树的前序遍历输出为:
ABDHIEJCFG

3.8.3 中序遍历

中序遍历就是从二叉树的根结点出发,当第二次到达结点时就输出结点数据,按照先向左在向右的方向访问。

图3.13所示二叉树中序访问如下:

从根结点出发,则第一次到达结点A,不输出A,继续向左访问,第一次访问结点B,不输出B;继续到达D,H;
到达H,H左子树为空,则返回到H,此时第二次访问H,故输出H;
H右子树为空,则返回至D,此时第二次到达D,故输出D;
由D返回至B,第二次到达B,故输出B;
按照同样规则继续访问,输出J、E、A、F、C、G;

则3.13所示二叉树的中序遍历输出为:
HDIBJEAFCG

3.8.3.1后继节点

后继节点是中序遍历后的集合每个元素的下一个元素

    它有右子树;则其后继节点为其右子树的最左节点

    它没有右子树,但它本身是一个左孩子,则后继节点为它的双亲

    它没有右子树,但它本身是一个右孩子,此时沿着指向父节点的指针一直向上遍历,直到找到一个是它父节点的左子节点的节点,如果这个节点             存在,那么这个节点的父节点就是我们要找的下一个节点

3.8.3.2前驱节点

前驱节点是中序遍历后的集合每个元素的上一个元素

它有左子树,则左子树根节点为其前驱节点

    它没有左子树,且它本身为右子树,则其父节点为其前驱节点

    它没有左子树,且它本身为左子树,此时沿着指向父节点的指针一直向上遍历,直到找到一个是它父节点的右子节点的节点,如果这个节点             存在,那么这个节点的父节点就是我们要找的下一个节点

3.8.4 后序遍历

后序遍历就是从二叉树的根结点出发,当第三次到达结点时就输出结点数据,按照先向左在向右的方向访问。

图3.13所示二叉树后序访问如下:

从根结点出发,则第一次到达结点A,不输出A,继续向左访问,第一次访问结点B,不输出B;继续到达D,H;
到达H,H左子树为空,则返回到H,此时第二次访问H,不输出H;
H右子树为空,则返回至H,此时第三次到达H,故输出H;
由H返回至D,第二次到达D,不输出D;
继续访问至I,I左右子树均为空,故第三次访问I时,输出I;
返回至D,此时第三次到达D,故输出D;
按照同样规则继续访问,输出J、E、B、F、G、C,A;

则图3.13所示二叉树的后序遍历输出为:
HIDJEBFGCA
虽然二叉树的遍历过程看似繁琐,但是由于二叉树是一种递归定义的结构,故采用递归方式遍历二叉树的代码十分简单。
递归实现代码如下:

/*二叉树的前序遍历递归算法*/

void PreOrderTraverse(BiTree T)

{

    if(T==NULL)

    return;

    printf("%c", T->data);  /*显示结点数据,可以更改为其他对结点操作*/

    PreOrderTraverse(T->lchild);    /*再先序遍历左子树*/

    PreOrderTraverse(T->rchild);    /*最后先序遍历右子树*/

}

 

 

/*二叉树的中序遍历递归算法*/

void InOrderTraverse(BiTree T)

{

    if(T==NULL)

    return;

    InOrderTraverse(T->lchild); /*中序遍历左子树*/

    printf("%c", T->data);  /*显示结点数据,可以更改为其他对结点操作*/

    InOrderTraverse(T->rchild); /*最后中序遍历右子树*/

}

 

 

/*二叉树的后序遍历递归算法*/

void PostOrderTraverse(BiTree T)

{

    if(T==NULL)

    return;

    PostOrderTraverse(T->lchild);   /*先后序遍历左子树*/

    PostOrderTraverse(T->rchild);   /*再后续遍历右子树*/

    printf("%c", T->data);  /*显示结点数据,可以更改为其他对结点操作*/

}

3.8.5 层次遍历

层次遍历就是按照树的层次自上而下的遍历二叉树。针对图3.13所示二叉树的层次遍历结果为:
ABCDEFGHIJ
层次遍历的详细方法可以参考二叉树的按层遍历法

3.8.6 遍历常考考点

对于二叉树的遍历有一类典型题型。
1)已知前序遍历序列和中序遍历序列,确定一棵二叉树。
例题:若一棵二叉树的前序遍历为ABCDEF,中序遍历为CBAEDF,请画出这棵二叉树。
分析:前序遍历第一个输出结点为根结点,故A为根结点。早中序遍历中根结点处于左右子树结点中间,故结点A的左子树中结点有CB,右子树中结点有EDF。
如图3.14所示:

按照同样的分析方法,对A的左右子树进行划分,最后得出二叉树的形态如图3.15所示:

2)已知后序遍历序列和中序遍历序列,确定一棵二叉树。
后序遍历中最后访问的为根结点,因此可以按照上述同样的方法,找到根结点后分成两棵子树,进而继续找到子树的根结点,一步步确定二叉树的形态。
:已知前序遍历序列和后序遍历序列,不可以唯一确定一棵二叉树。

4 结语

通过上述的介绍,已经对于二叉树有了初步的认识。本篇文章介绍的基础知识希望读者能够牢牢掌握,并且能够在脑海中建立一棵二叉树的模型,为后续学习打好基础。



作者:MrHorse1992
链接:https://www.jianshu.com/p/bf73c8d50dc2
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

#pragma once
//二叉树的节点结构
template <typename T>
struct BSNode
{
	BSNode(T t) : value(t), lchild(nullptr), rchild(nullptr) {}
	BSNode() = default;
	T value; //节点的值
	BSNode<T>* lchild;//指向节点的左孩子
	BSNode<T>* rchild;//指向节点的右孩子
	BSNode<T>* parent;//指向节点的双亲
};

template <typename T>
class CTowBifurcateTree
{
public:
	CTowBifurcateTree();
	~CTowBifurcateTree();
	void preOrder();    //前序遍历二叉树
	void inOrder();        //中序遍历二叉树
	void postOrder();    //后序遍历二叉树
	void layerOrder();    //层次遍历二叉树

	BSNode<T>* search_recursion(T key);        //递归地进行查找
	BSNode<T>* search_Iterator(T key);        //迭代地进行查找

	T search_minimun(); //查找最小元素
	T search_maximum(); //查找最大元素

	BSNode<T>* successor(BSNode<T>* x);    //查找指定节点的后继节点
	BSNode<T>* predecessor(BSNode<T>* x);    //查找指定节点的前驱节点

	void insert(T key);    //插入指定值节点
	void remove(T key);    //删除指定值节点
	void destory();        //销毁二叉树
	void print();        //打印二叉树


private:
	BSNode<T>* root; //根节点
private:
	BSNode<T>* search(BSNode<T>* & p, T key);
	void remove(BSNode<T>*  p, T key);
	void preOrder(BSNode<T>* p);
	void inOrder(BSNode<T>* p);
	void postOrder(BSNode<T>* p);
	void layerOrder(BSNode<T>* p);
	T search_minimun(BSNode<T>* p);
	T search_maximum(BSNode<T>* p);
	void destory(BSNode<T>* &p);
};

#include "stdafx.h"
#include "TowBifurcateTree.h"
#include <queue>

template <typename T>
CTowBifurcateTree<T>::CTowBifurcateTree()
{
}

template <typename T>
CTowBifurcateTree<T>::~CTowBifurcateTree()
{
}

//前序遍历二叉树
template <typename T>
void CTowBifurcateTree<T>::preOrder() {
	preOrder(root);
}
//中序遍历二叉树
template <typename T>
void CTowBifurcateTree<T>::inOrder() {
	inOrder(root);
}

//后序遍历二叉树
template <typename T>
void CTowBifurcateTree<T>::postOrder(){
	postOrder(root);
}

//层次遍历二叉树
template <typename T>
void CTowBifurcateTree<T>::layerOrder(){
	layerOrder(root);
}

//递归地进行查找
template <typename T>
BSNode<T>* CTowBifurcateTree<T>::search_recursion(T key) {
	return search(root, key);
}

//迭代地进行查找
template <typename T>
BSNode<T>* CTowBifurcateTree<T>::search_Iterator(T key) {
	BSNode<T>* ponde = root;
	while (ponde != nullptr)
	{
		if (ponde->value == key)
			return ponde;
		if (ponde->value > key)
			ponde = ponde->lchild;
		else
			ponde = ponde->rchild;
	}
	return nullptr;
}

//查找最小元素
template <typename T>
T CTowBifurcateTree<T>::search_minimun() {
	return search_minimun(root);
}

//查找最大元素
template <typename T>
T CTowBifurcateTree<T>::search_maximum(){
	return search_maximum(root);
}

//查找指定节点的后继节点
template <typename T>
BSNode<T>* CTowBifurcateTree<T>::successor(BSNode<T>* pnode) {
	/*
	后继节点是中序遍历后的集合每个元素的下一个元素
	它有右子树;则其后继节点为其右子树的最左节点
	它没有右子树,但它本身是一个左孩子,则后继节点为它的双亲
	它没有右子树,但它本身是一个右孩子,此时沿着指向父节点的指针一直向上遍历,直到找到一个是它父节点的左子节点的节点,如果这个节点存在,那么这个节点的父节点就是我们要找的下一个节点
	*/
	if (pnode->rchild != nullptr) {
		//玩家有右子树
		pnode = pnode->rchild;
		while (pnode->lchild != nullptr) {
			pnode = pnode->lchild;
		}
		return pnode;
	}
	/没有右子树情况
	BSNode<T>* pparent = pnode->parent;
	if (pparent == nullptr)
		return pnode;
	//它没有右子树,但它本身是一个左孩子,则后继节点为它的双亲
	//if (pparent->lchild == pnode)
	//	return pparent;
	//但它本身是一个右孩子,则其后继节点为“具有左孩子的最近父节点”
	//整棵数的最右节点没有后继节点,因此加上parent != null。
	while (pparent->rchild == pnode && pparent != nullptr) {
		pnode = pparent;
		if (pparent->parent != nullptr)
			pparent = pparent->parent;
		else
			break;
	}
	return pparent;

}

//查找指定点的前驱节点
template <typename T>
BSNode<T>* CTowBifurcateTree<T>::predecessor(BSNode<T>* pnode){
	/*
	它有左子树,则左子树根节点为其前驱节点
	它没有左子树,且它本身为右子树,则其父节点为其前驱节点
	它没有左子树,且它本身为左子树,此时沿着指向父节点的指针一直向上遍历,直到找到一个是它父节点的右子节点的节点,如果这个节点存在,那么这个节点的父节点就是我们要找的下一个节点
	*/
	if (pnode->lchild != nullptr)//有左子树
	{
		pnode = pnode->lchild;
		while (pnode->rchild != nullptr)
		{
			pnode = pnode->rchild;
		}
		return pnode;
	}

	BSNode<T>* pparent = pnode->parent;
	while (pparent != nullptr && pparent->lchild == pnode)//如果进入循环,则是第三种情况;否则为第二种情况
	{
		pnode = pparent;
		if (pparent->parent != nullptr)
			pparent = pparent->parent;
		else
			break;
	}
	return pparent;
}

//插入指定值节点
template <typename T>
void CTowBifurcateTree<T>::insert(T key) {
	BSNode<T>* pparent = nullptr;
	BSNode<T>* pnode = root;

	while (pnode != nullptr)        //寻找合适的插入位置
	{
		pparent = pnode;
		if (key > pnode->value)
			pnode = pnode->rchild;
		else if (key < pnode->value)
			pnode = pnode->lchild;
		else
			break;
	}

	pnode = new BSNode<T>(key); //以元素的值构建新节点

	if (pparent == nullptr)            //如果是空树
	{
		root = pnode;                  //则新节点为根
	}
	else
	{
		if (key > pparent->value)
		{
			pparent->rchild = pnode;//否则新节点为其父节点的左孩
		}
		else if (key < pparent->value)
		{
			pparent->lchild = pnode; //或右孩
		}
	}
	pnode->parent = pparent;        //指明新节点的父节点 
}

//删除指定值节点
template <typename T>
void CTowBifurcateTree<T>::remove(T key){
	remove(root, key);
}
//销毁二叉树
template <typename T>
void CTowBifurcateTree<T>::destory() {
	destory(root);
}
//打印二叉树
template <typename T>
void CTowBifurcateTree<T>::print() {}
template <typename T>
BSNode<T>* CTowBifurcateTree<T>::search(BSNode<T>* & pnode, T key){
	if (pnode == nullptr) return nullptr;
	if (pnode->value == key) return pnode;
	if (pnode->value > key)	search(pnode->lchild, key);
	else search(pnode->rchild, key);
}

template <typename T>
void CTowBifurcateTree<T>::remove(BSNode<T>*  pnode, T key){
	if (pnode != nullptr)
	{
		if (pnode->value == key)
		{
			BSNode<T>* pdel = nullptr;//记录要删的节点

			if (pnode->lchild == nullptr || pnode->rchild == nullptr)
				pdel = pnode;                    //情况二、三:被删节点只有左子树或右子树,或没有孩子
			else
				pdel = predecessor(pnode);      //情况一:被删节点同时有左右子树,则删除该节点的前驱

												//此时,被删节点只有一个孩子(或没有孩子).保存该孩子指针
			BSNode<T>* pchild = nullptr;//获取要顶替本节点的子节点
			if (pdel->lchild != nullptr)
				pchild = pdel->lchild;
			else if(pdel->rchild != nullptr)
				pchild = pdel->rchild;

			//让孩子指向被删除节点的父节点
			if (pchild != nullptr)
				pchild->parent = pdel->parent;

			//如果要删除的节点是头节点,注意更改root的值
			if (pdel->parent == nullptr)
				root = pchild;

			//如果要删除的节点不是头节点,要注意更改它的双亲节点指向新的孩子节点
			else if (pdel->parent->lchild == pdel)
			{
				pdel->parent->lchild = pchild;
			}
			else if (pdel->parent->rchild == pdel)
			{
				pdel->parent->rchild = pchild;
			}

			if (pnode->value != pdel->value)
				pnode->value = pdel->value;
			delete pdel;
		}
		//进行递归查找当前节点位置
		else if (key > pnode->value)
		{
			remove(pnode->rchild, key);
		}
		else remove(pnode->lchild, key);
	}
}

//前序遍历 若二叉树为空,则空操作返回,否则先访问根节点,然后前序遍历左子树,再前序遍历右子树
template <typename T>
void CTowBifurcateTree<T>::preOrder(BSNode<T>* ponde){
	if (ponde == nullptr) return;
	cout << ponde->value << endl;
	preOrder(ponde->lchild);
	preOrder(ponde->rchild);
}

//中序遍历 若二叉树为空,则空操作返回,否则从根节点开始,中序遍历根节点的左子树,然后访问根节点,最后中序遍历右子树。
template <typename T>
void CTowBifurcateTree<T>::inOrder(BSNode<T>* ponde){
	if (ponde != nullptr)
	{
		inOrder(ponde->lchild);
		cout << ponde->value << endl;
		inOrder(ponde->rchild);
	}
}

//后序遍历 若树为空,则返回空操作,否则从左到右先叶子后节点的方式遍历访问左右子树,左右子树都访问结束,才访问根节点
template <typename T>
void CTowBifurcateTree<T>::postOrder(BSNode<T>* p) {
	if (p != nullptr)
	{
		postOrder(p->lchild);
		postOrder(p->rchild);
		cout << p->value << endl;
	}
}

//层次遍历
template<typename T>
void CTowBifurcateTree<T>::layerOrder(BSNode<T>* p) {
	std::queue<BSNode<T>*> q;
	if (p == nullptr) return;
	BSNode<T>* ponde;
	q.push(p);
	cout << p->value << endl;
	while (!q.empty())
	{
		ponde = q.front();
		q.pop();

		if (ponde->lchild != nullptr)
		{
			q.push(ponde->lchild);
			cout << ponde->lchild->value << endl;
		}
		if (ponde->rchild != nullptr)
		{
			q.push(ponde->rchild);
			cout << ponde->rchild->value << endl;
		}
	}
}
template <typename T>
T CTowBifurcateTree<T>::search_minimun(BSNode<T>* p) {
	if (p != nullptr)
	{
		if (p->lchild != nullptr)
		{
			return search_minimun(p->lchild);
		}
		return p->value;
	}
	return 0;
}

template <typename T>
T CTowBifurcateTree<T>::search_maximum(BSNode<T>* p) {
	if (p != nullptr)
	{
		if (p->rchild != nullptr)
		{
			return search_maximum(p->rchild);
		}
		return p->value;
	}
	return 0;
}

template <typename T>
void CTowBifurcateTree<T>::destory(BSNode<T>* &p) {
	if (p != nullptr)
	{
		if (p->lchild != nullptr)
			destory(p->lchild);
		if (p->rchild != nullptr)
			destory(p->rchild);
		delete p;
		p = nullptr;
	}
}

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值