论文阅读笔记:Relation Network《Learning to Compare: Relation Network for Few-Shot Learning》

题目《学会比较:小样本关系网络》

版权声明:本文为CSDN博主「深视」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_36104364/article/details/106158012
本文在CSDN博主「深视」的基础上有一点点改动,添加了一些自己读文献过程的记录。感谢大佬的论文解读。

1. 核心思想

在孪生网络、匹配网络、原型网络的基础上把小样本学习继续推进,主要创新思路在于:相对于孪生和匹配网络预先定义的相似性度量或者非线性度量,这里的相似性度量是可以学习的非线性深度度量。
这里的关系网络可以看作是学习一个深度的嵌入和一个深度的非线性度量(相似性)。以数据驱动的形式选择度量,不必按照假设去选择固定的度量方式。

2. 实现过程

2.1 嵌入模块和关系模块

这里的嵌入模块用来对输入的图像进行信息提取;关系模块所做的事情是:先把来自支持集和查询集的特征图进行拼接(这里采用串联的方式),然后通过关系模块计算两者的相关性得分。以此找到支持集中哪类与查询集最相似。
嵌入模块和关系模型的形式在网络结构中,本质上都是卷积和全连接层。

本文划分训练集、支持集和测试集;支持集和测试集共享相同的标签空间,但是训练集有自己的标签空间,与支持集/测试集不相交。如果支持集包含用于C个唯一类中的每类的K个标记样本,则目标小样本问题称为C-Way K-shot。

Realation Network 网络架构图

对于one-shot问题,对两个样本通过嵌入模块提取特征图,concat拼接两个特征图并输入到关系模块,产生0-1范围内的标量。总体流程公式表示如下:
one-shot 关系网络查询
对于样本xi和xj 分别送入到嵌入模块,得到fϕ(xi)和fϕ(xj).这里的嵌入模块是一个CNN架构(暂且当作VGG吧),C操作就是拼接操作,关系模块得到的0-1的范围,称为关系得分。

对于K-shot问题:
对于每个训练类的所有样本的嵌入模块输出进行逐元素求和,形成该类的特征图。后续操作和one-shot类似。--------有点粗暴
其实这里类似在求类内的样本平均特征,也可通过平均操作实现,或者通过1*1的卷积进行特征降维。

2.2 目标函数

这里使用MSE,回归关系得分为ri,j。类似于回归问题。匹配对的相似度为1,不匹配的为0.
loss函数

2.3 网络结构

非常简单,小样本和zero样本学习网络结构分别如下。
嵌入模块一共四个卷积块,相关性模块有两个卷积块;然后通过两个全连接和sigmoid函数得到相似性得分。
小样本

2.4 训练策略

与Matching Network等基本相同,分成多个Episode。

2.5 算法推广

推广到zero-shot任务,DNN得到的是一个语义特征或者描述向量。
zero-shot
本文的结构不能保证该相似函数的 自相似和对称性 ;但是从经验上看,这些性质在数值上可以被训练。

3. 结论

提出了一种简单的方法,称为关系网络(Relationship Network),用于小样本和zero-shot学习。关系网络学习用于比较query与样本的嵌入和深度非线性距离度量。通过端到端地训练网络,可以调整有效的few-shot学习的嵌入和距离度量。更加简单有效。

4. 创新点

所以本文的主要贡献就是改进了相似性度量学习的方式,以数据驱动去选择,而不是像匹配、原型、孪生网络一样预先人为设定。

5. 算法评价

在学习了Matching Network等一系列文章后,本文的思路是非常好理解的,就是改进了相似性度量的方式,由预先定义的固定的相似性度量函数(Matching Network——余弦距离,Prototypical Network——平方欧氏距离)或者Siamese Network中线性度量方式,升级为利用神经网络训练得到一个可学习的非线性相似性度量函数。

实验结果表示在多个数据集上都取得了不错的成绩,但本文对于5-shot问题采用将特征图逐元素相加的方式来获取每个类别对应的特征信息的方式,我是存在异议的,这种做法是否过于简单粗暴?特征图直接相加是否会导致特征信息遭到破坏?这可能也是本文在5-shot任务中表现普遍较差的原因吧。
摘自博主深视

  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: "Learning to Compare: Relation Network for Few-Shot Learning" 是一篇关于Few-Shot Learning(小样本学习)的论文,提出了一种称为“关系网络”的新型神经网络架构。 该网络旨在解决小样本学习中的问题,该问题通常会导致在只有极少量的训练样本的情况下,模型的泛化性能下降。关系网络使用一个子网络来提取图像特征,并通过计算这些特征之间的关系来对它们进行分类。 关系网络的特点是它在执行分类任务时能够捕捉物体之间的关系和上下文信息,因此在少量样本的情况下,它的性能比其他方法更好。该网络已经被广泛应用于小样本学习领域,并在多项实验中获得了优秀的表现。 ### 回答2: 本文主要介绍了一种基于关系网络的few-shot学习方法——Relation Network(RN)。Few-shot学习是一种类别识别的任务,旨在从非常少量(通常是几个)的样本中学习新的类别。RN为此提供了一种强大的框架,可以在few-shot学习中能够有效地捕捉物体之间的关系,从而实现精确的类别识别。 RN在模型设计中引入了两个重要的组件:特征提取器和关系网络。特征提取器通常是卷积神经网络(CNN),它可以提取出每个样本的特征表示。关系网络的作用是计算出每对样本之间的关系,将这些关系汇总到一起,最终出现样本之间的相对关系。在计算样本之间的关系时,RN采用的是一种全连接神经网络,它对每一对样本的特征进行融合,然后输出一个特定类别的置信度。 值得注意的是,RN的关系网络不仅可以使用在few-shot学习中,也可以应用于全局分类问题。此外,RN采用了一些有效的技巧来加速测试阶段的推理速度,比如使用浅层矩阵乘法以减少计算量,和简单的欧氏距离作为度量衡量。 总而言之,RN是一种强大的学习方法,特别是在few-shot学习方面,可以实现更好的判别性能和更准确的类别识别。不过,同时也存在一些限制,比如需要更多的数据集来训练样本的特征提取器,以及容易出现过拟合问题。因此,RN还需要进行更深入的研究和优化,以实现更大范围的应用和实际效果。 ### 回答3: 学习比较:关系网络是一种少样本学习的方法,旨在解决少样本学习问题中的挑战。传统的机器学习方法需要大量数据来训练模型。而在现在许多领域,例如医疗诊断和工业生产,只有很少的数据可用于训练模型。在这种情况下,少样本学习就变得非常重要。学习比较:关系网络是少样本学习的一种新方法,它通过学习对象之间的关系来捕捉它们之间的相似性和差异性。 学习比较:关系网络包含两个部分:特征提取器和关系网络。特征提取器将输入图像转换为对应的向量表示,而关系网络则对这些向量进行比较,从而推断它们之间的关系。关系网络可以用来处理各种不同的问题,例如分类、回归和生成等。 学习比较:关系网络的优点是,它可以利用少量的数据来学习,并且可以在不同的任务之间共享知识。这使它成为处理少样本学习问题时的一个有力工具。在实际应用中,学习比较:关系网络已经被广泛应用于图像分类、目标检测和语音识别等领域,并产生了许多显著的结果。未来,随着越来越多的研究者开始使用这种方法,我们可以期待看到更多的成功案例,并进一步将学习比较:关系网络应用到更广泛的领域,以帮助人们解决难题并改善生活质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值