这个赛题的训练数据其实和去年是一样的,只是是语义分割的评价指标改成了类似实例分割的指标。
1.赛道背景
变化检测对“耕地红线”、土地利用监管等应用具有重要意义。利用多时相遥感数据,采用多种图像处理和模式识别方法提取变化信息,并定量分析和确定地表变化的特征与过程,便是遥感变化检测的本质。传统遥感行业基于人工两期影像标注从而判别地物时相变化的方法受限于效率低、成本高等问题,难以满足实际应用需求,本赛道希望遴选出高效的遥感图像变化检测算法模型,对图像中的变化图斑信息进行高效识别,提高空间信息网络建设中遥感图像快速变化识别能力。
2. 赛道任务
变化检测赛道力求对通过前后两时相的遥感影像,提取出地物发生变化的斑块。选手使用主办方提供的两个时相的遥感图像进行变化判别处理,主办方依据评分标准对结果进行综合评价。依据所述地物变化标准,以耕地-建筑/动土的对象级变化检测为目标,设计赛题如下:
a. 初赛:算法在耕地-建筑/动土的对象级变化检测的能力;
b. 复赛:算法在耕地-建筑/动土的对象级变化检测的能力。进阶考察算法分类的准确性,测试数据尺寸变化的适应性;
c. 决赛:算法在耕地-建筑/动土的对象级变化检测的能力。进阶考察现场答辩评议,嵌入式环境的适应性(模型复杂度及效率),算法分类的准确性,测试数据尺寸变化的适应性,支持统一的接口调用;
其实就是docker提交。
3. 数据简介及赛题分析
数据来源
(1)来源:数据为1米-2米分辨率的高分一号、高分二号图像,由武汉大学测绘遥感信息工程国家重点实验室采集、标注、构建;
(2)规模:6000+张遥感影像变化检测样本数据(按512*512大小折算);
(3)用途:土地利用动态监测,矿产资源开发状况和地质灾害的调查与监测;生态环境监管调查与评价,水环境监测与评估,空气环境监测与评价;耕地数量与质量调查

文章介绍了使用Siam-ConvNext网络架构进行遥感影像变化检测的比赛项目,包括数据集特点、比赛任务、网络设计、训练策略、数据增强方法和最终结果。团队在决赛中取得了精度12.38的排名,并强调了模型大小和速度优化的重要性。
最低0.47元/天 解锁文章
1552

被折叠的 条评论
为什么被折叠?



