每天都看到的机柜还有这些讲究你知道吗

从事电气这行,有个大家每天都能看到,但是却很少把他当回事的东西,就是机柜。大家可能更加关心柜内接线漂亮不漂亮,而忽略了柜子本体的好坏。

在机柜行业,威图是最具代表性的,同时国内的仿威图厂家越来越多,市场也越来越大。以威图柜子为例,机柜从构造上可分为:五折型材柜,九折型材柜,十六折型材柜等。

威图ES 为五折型材柜,PS为九折型材柜,TS为十六折型材柜。通常来说,折弯越多,柜子骨架的承重能力就越强。但是又不能无限的折下去。

九折和十六折型材均为德国威图的专利,九折型材专利在很多年前到期后,国内出现了大量的厂商去仿,称之为仿威图。十六折的专利还在保护中,但是国内还是有很多厂商在仿制,毕竟市场空间大。偶尔有被打掉的。

九折型材机柜是指因柱梁结构的折弯次数(9次)而命名。九折型材为封闭的柱梁结构,比传统的开放梁柱、C型材结构强度高,受力大,造价低廉,占用空间小。下面图片大家一目了然。

图片

图片

相同的板材,如果经过十六道折弯相对PS九折型材多出7道折弯,使型材强度得到很大提高;对称的型钢截面设计,为灵活的并柜提供基础(可以沿宽度、深度方向任意的并柜布局)。

图片

图片

同时安装基面增加到四个,有效安装空间与九折系列相比,深度、宽度方向各增加50MM,整台机柜安装空间增加15%的空间。

机柜的质量,强度是很重要的一个方面,机柜的喷涂和EMC屏蔽的效果,也直接关系到产品的好坏。

喷涂这方面,仿威图柜这几年整体质量上提升了不少,如果不是专业的人,看几眼也分辨不出好坏。

在防腐处理上,基本上是三重漆面处理,能提供理想的防腐蚀保护,而且稳定不受矿物油、润滑油、乳液以及清洁用溶剂等的影响。

底层目前大部分是磷化处理,高端一点的开始使用新的技术,纳米纳米陶瓷涂层。在防腐和环保方面,比传统的处理工艺更好。

图片

中间层是电泳,通过电极的作用,电泳液会吸附在型材表面,形成一层20 µm的保护膜。

图片

最外面的一层是喷粉,根据要求,喷出不同的颜色。

图片

在屏蔽EMC(电磁干扰)方面,各家的柜子也有差异。EMC一方面是保护柜内的器件不受外界的干扰,同时,柜内的这些干扰也尽可能少的散发出去,以免影响柜外其他设备的正常运行。通常EMC是在专业的电子所进行测试的。

图片

曾经在一个现场,将手机放在柜子旁边,过会手机的触摸屏就会自己乱跳,可见现场的电磁环境是多么的恶劣。一些莫名其妙的问题,也和EMC有关。

售后服务发面,一般国内的机柜厂家的响应速度还是不错,关键还是要看你的量。

十折交叉验证五折交叉验证都是常用的交叉验证方法,主要区别在于数据集的划分。十折交叉验证将数据集分为十份,每次将其中一份作为验证集,剩下的九份作为训练集,依次轮流作为验证集,最后将十次验证结果平均得到最终结果。而五折交叉验证将数据集分为五份,每次将其中一份作为验证集,剩下的四份作为训练集,依次轮流作为验证集,最后将五次验证结果平均得到最终结果。 代码上实现十折交叉验证可以使用sklearn中的KFold函数,具体实现如下: ```python from sklearn.model_selection import KFold # 定义数据集 X = ... y = ... # 定义十折交叉验证 kf = KFold(n_splits=10) # 进行交叉验证 for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] # 在训练集上训练模型,在验证集上测试模型 ``` 同样地,使用sklearn中的KFold函数也可以实现五折交叉验证,只需要将n_splits参数设置为5即可。 ```python from sklearn.model_selection import KFold # 定义数据集 X = ... y = ... # 定义五折交叉验证 kf = KFold(n_splits=5) # 进行交叉验证 for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] # 在训练集上训练模型,在验证集上测试模型 ``` 需要注意的是,十折交叉验证五折交叉验证的优劣取决于数据集的大小复杂度,不同的数据集可能会有不同的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SongYu汇集

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值