· 牛顿莱布尼兹的微积分、泰勒展开、域转换(傅里叶变换、拉普拉斯变换),有相似的思想,又相互成就,厉害厉害!!!
· 域变换利用微积分无限元思想将信号无限分解为完备正交集的组合;
· 泰勒展开利用微积分无限元思想将信号分解为无穷阶导的组合;
· 各种变换或者展开其实就是转换到不同的角度进行分析,换个角度看世界,有意思,[666][666][666][666][666]!!!
↓
矢量Vy=(Vx1, Vx2, vx3)与Vy=(Vy1, Vy2 Vy3)正交的定义,
其内积为0,即:
↓
正交函数定义→在(t1,t2)区间的两个函数φ 1(t)和φ2(t),若满足:
则称φ1(t)和φ2(t)在区间(t1, t2)内正交;
↓
完备正交函数集:正交函数集{φy(t),φ 2(t),....φn(t)}之外,不存在函数φ(t)(≠0)满足内积为0;
常用的完备正交函数集:
↓
将任一周期函数f(t)用n个正交函数的线性组合来近似,可表示为:
↓
求解C1,C2,C3……
确定目标函数(均方误差):
↓
求极值点:
化简:
化简:
得到:
↓
↓
可分解为如下三角级数,设周期信号f(t),其周期为T,角频率Ω=2π/T,称为f(t)的傅里叶级数(正交分解):
↓
同频项合并后得(A0为直流分量):
↓
三角形式的傅里叶级数,含义比较明确,但运算常感不便,因而经常采用指数形式的傅里叶级数;
根据变换公式 or 进行推导得到:
n变成-n后可得:
合并后得到:
↓
上式中可以提取出常量,也就是要求的傅里叶级数展开的常数,称为傅里叶系数:
经过如下的转换:
得到:
↓
转换一下得到:
T趋于无穷大的时候Ω趋于无穷小,Ω趋于无穷小的时候nΩ就会趋于连续,,ω就是角频率,Ω足够小,ω就趋于连续了(也就是说ω颗粒度可以无限小),可将上式进行转换,注意是转换,而不是恒等转换:
因为FnT随Fn变换,Fn随公式右边积分变换,所以Fn随公式右边积分变换
n随nΩ变换,Ω恒定,所以可以用ω(nΩ)代替n:
Fn→F(ω)
最后得到:
此公式中可以理解为是一个筛选因子,作用到f(t)进行信号的筛选,然后积分即可积出该频率下的幅值;
这个公式整体理解为,在角频率ω的时候,它的幅值为F(ω);
上式就是连续傅里叶变换,其实就是从傅里叶级数来的,计算出每个频率下的幅度值,当T趋于无穷大的时候,频率就可以足够小,使得角频率ω足够小,应用上式就可以统计出不同角频率下的幅度值,统计出后即可在频率域进行信号处理;
↓
最后得到连续傅里叶变换对(一维正逆变换),这里把变量ω(角频率)换成了函数频率(u=1/T),注意是转换,而不是恒等转换,因为u随ω变化,所以得到:
,u为1/T频率;
式中: j=√-1 ,.x称为时域变量,u称为频域变量;
↓
离散傅里叶变换对(一维正逆变换),具体推导https://blog.csdn.net/lxhdy12345/article/details/107130919/,需要借助奇异函数δ函数:
式中: x,u=0,1,2,...,N-1;
↓
↓
信号的分解,复合信号的毛刺部分其实就是低频信号;
↓
如果要想该公式成立,需符合狄利赫里条件,即,所以这给傅里叶变换公式带来一定的局限性,它只适用于在定义域中收敛的函数,即只能分析稳定的系统!如果我要分析一些不稳定的系统,即分析在定义域中不收敛的函数,那就需要用到拉普拉斯变换;
↓
待填坑