分析总结
CV领域的归纳总结,对具体技巧的分析
catOneTwo
【GitHub】https://github.com/CatOneTwo
【知乎】CatOneTwo
展开
-
解读 | 自监督视觉特征学习综述
本文是一篇 2019 年的综述文章的解读,这篇综述总结了自监督学习在视觉领域的应用,全文清晰条理,容易理解。标题:《Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey》链接:paper1. 自监督介绍大规模数据集的收集和标注既耗时又昂贵。为了避免耗时且昂贵的数据标注,有人提出了自监督方法,一种无监督学习的子方法,以在不使用任何人工标注的情况下从大规模未标记图像或视频中学习视觉特征。为了从无标.原创 2020-07-02 23:26:07 · 4320 阅读 · 0 评论 -
一文读懂 YOLOv1,v2,v3,v4 发展史
YOLO 系列算法是目标检测 one-stage 类的代表算法,本文将从 问题背景,创新点等方面比较,了解它们的的发展历程。文章目录一、任务描述二、设计思想三、发展历程1. YOLOv12. YOLOv23. YOLOv34. YOLOv4四、总结一、任务描述目标检测是为了解决图像里的物体是什么,在哪里的问题。输入一幅图像,输出的是图像里每个物体的类别和位置,其中位置用一个包含物体的框表示。需要注意,我们的目标,同时也是论文中常说的感兴趣的物体,指我们关心的类别(行人检测只检测人,交通检测只关.原创 2020-05-08 23:31:49 · 8030 阅读 · 0 评论 -
一文读懂 R-CNN,Fast R-CNN,Faster R-CNN 发展史
任务描述目标检测是为了解决图像里的物体是什么,在哪里的问题。输入一幅图像,输出的是图像里每个物体的类别和位置,其中位置用一个包含物体的框表示。需要注意,我们的目标,同时也是论文中常说的感兴趣的物体,指我们关心的类别(行人检测只检测人,交通检测只关心交通工具等),或者数据集包含的类别,并不是图像里所有的物体都是目标,比如建筑,草坪也是物体,但他们常常是背景。从计算机视觉的角度看,目标检测是分...原创 2020-05-06 21:22:46 · 1695 阅读 · 0 评论