欧拉降幂公式的证明

欧拉降幂公式与证明

转载自D-Tesla

欧拉降幂公式

AKAK%ϕ(m)+ϕ(m)( mod m)K>ϕ(m) A K ≡ A K % ϕ ( m ) + ϕ ( m ) (   m o d   m ) K > ϕ ( m )

证明

今天在牛客多校的群里看一个数学大佬写的证明,不过是拍照,我决定动手自己写一下

AKAK%ϕ(m)+ϕ(m)( mod m) K>ϕ(m)(1) A K ≡ A K % ϕ ( m ) + ϕ ( m ) (   m o d   m )   K > ϕ ( m ) ( 1 )

证明如下
1 若 (A,m)=1 ( A , m ) = 1 ,根据欧拉定理 Aϕ(m)1(mod m) A ϕ ( m ) ≡ 1 ( m o d   m ) ,即可轻易得证
2 若 (A,m)1 ( A , m ) ≠ 1 ,证明如下
K=aϕ(m)+c K = a ∗ ϕ ( m ) + c a1,0c<ϕ(m) a ≥ 1 , 0 ≤ c < ϕ ( m )
那么欧拉降幂公式就是

AKAaϕ(m)+cAϕ(m)+c( mod m)(2) A K ≡ A a ∗ ϕ ( m ) + c ≡ A ϕ ( m ) + c (   m o d   m ) ( 2 )

即 证
Aaϕ(m)Aϕ(m)(mod m) A a ∗ ϕ ( m ) ≡ A ϕ ( m ) ( m o d   m )

即 证
A2ϕ(m)Aϕ(m)(mod m) A 2 ∗ ϕ ( m ) ≡ A ϕ ( m ) ( m o d   m )

移项
Aϕ(m)(Aϕ(m)1)0(mod m) A ϕ ( m ) ( A ϕ ( m ) − 1 ) ≡ 0 ( m o d   m )

即证
m|Aϕ(m)(Aϕ(m)1)(3) m | A ϕ ( m ) ( A ϕ ( m ) − 1 ) ( 3 )

若有

(m(m,Aϕ(m)),A)=1(4) ( m ( m , A ϕ ( m ) ) , A ) = 1 ( 4 )

根据欧拉定理
Aϕ(m)Akϕ(m(m,Aϕ(m)))(Aϕ(m(m,Aϕ(m))))k1(mod (m(m,Aϕ(m))) A ϕ ( m ) ≡ A k ∗ ϕ ( m ( m , A ϕ ( m ) ) ) ≡ ( A ϕ ( m ( m , A ϕ ( m ) ) ) ) k ≡ 1 ( m o d   ( m ( m , A ϕ ( m ) ) )
其中 k1 k ≥ 1

移项即得 m(m,Aϕ(m))|(Aϕ(m)1) m ( m , A ϕ ( m ) ) | ( A ϕ ( m ) − 1 )
同时乘 (m,Aϕ(m)) ( m , A ϕ ( m ) )
m|(m,Aϕ(m))(Aϕ(m)1) m | ( m , A ϕ ( m ) ) ∗ ( A ϕ ( m ) − 1 )
m|Aϕ(m)(Aϕ(m)1) m | A ϕ ( m ) ( A ϕ ( m ) − 1 )
就是 式 3

所以证明 式子 4

(m(m,Aϕ(m)),A)=1 ( m ( m , A ϕ ( m ) ) , A ) = 1
就好了

进行素因子分解

A=pa11pa22....pat1t1qb11qb22...qbt2t2 A = p 1 a 1 ∗ p 2 a 2 ∗ . . . . ∗ p t 1 a t 1 ∗ q 1 b 1 ∗ q 2 b 2 ∗ . . . ∗ q t 2 b t 2

m=pc11pc22....pct1t1rd11rd22...rdt3t3 m = p 1 c 1 ∗ p 2 c 2 ∗ . . . . ∗ p t 1 c t 1 ∗ r 1 d 1 ∗ r 2 d 2 ∗ . . . ∗ r t 3 d t 3

(A,m)=pmin(a1,c1)1pmin(a2,c2)2....pmin(at1,ct1)t1 ( A , m ) = p 1 m i n ( a 1 , c 1 ) ∗ p 2 m i n ( a 2 , c 2 ) ∗ . . . . ∗ p t 1 m i n ( a t 1 , c t 1 )

(Aϕ(m),m)=pmin(a1ϕ(m),c1)1pmin(a2ϕ(m),c2)2....pmin(at1ϕ(m),ct1)t1 ( A ϕ ( m ) , m ) = p 1 m i n ( a 1 ∗ ϕ ( m ) , c 1 ) ∗ p 2 m i n ( a 2 ∗ ϕ ( m ) , c 2 ) ∗ . . . . ∗ p t 1 m i n ( a t 1 ∗ ϕ ( m ) , c t 1 )

欧拉函数 ϕ(m)=pc111pc212....pct11t1(p11)(p21)....(pt11) ϕ ( m ) = p 1 c 1 − 1 ∗ p 2 c 2 − 1 ∗ . . . . ∗ p t 1 c t 1 − 1 ( p 1 − 1 ) ∗ ( p 2 − 1 ) ∗ . . . . ∗ ( p t 1 − 1 )

aiϕ(m)aipci1i(pi1)pci1i(pi1)pci1i a i ∗ ϕ ( m ) ≥ a i ∗ p i c i − 1 ∗ ( p i − 1 ) ≥ p i c i − 1 ∗ ( p i − 1 ) ≥ p i c i − 1

证明

pci1ici(6) p i c i − 1 ≥ c i ( 6 )

ci=1 c i = 1 ,成立

f(x)=ln(x)x1 f ( x ) = l n ( x ) x − 1
[3,] [ 3 , ∞ ] 单调减\
又有

f(2)=ln2<2pi f ( 2 ) = l n 2 < 2 ≤ p i

f(3)=ln3/2<2pi f ( 3 ) = l n 3 / 2 < 2 ≤ p i

于是有 式子6 成立
于是有
(Aϕ(m),m)=pmin(a1ϕ(m),c1)1pmin(a2ϕ(m),c2)2....pmin(at1ϕ(m),ct1)t1=pc11pc22....pct1t1 ( A ϕ ( m ) , m ) = p 1 m i n ( a 1 ∗ ϕ ( m ) , c 1 ) ∗ p 2 m i n ( a 2 ∗ ϕ ( m ) , c 2 ) ∗ . . . . ∗ p t 1 m i n ( a t 1 ∗ ϕ ( m ) , c t 1 ) = p 1 c 1 ∗ p 2 c 2 ∗ . . . . ∗ p t 1 c t 1

m(Aϕ(m),m)=qb11qb22...qbt2t2 m ( A ϕ ( m ) , m ) = q 1 b 1 ∗ q 2 b 2 ∗ . . . ∗ q t 2 b t 2

式子 4
(m(m,Aϕ(m)),A)=1 ( m ( m , A ϕ ( m ) ) , A ) = 1

得证
式子 3
m|Aϕ(m)(Aϕ(m)1)(3) m | A ϕ ( m ) ( A ϕ ( m ) − 1 ) ( 3 )

得证
式子 2
AKAaϕ(m)+cAϕ(m)+c( mod m)(2) A K ≡ A a ∗ ϕ ( m ) + c ≡ A ϕ ( m ) + c (   m o d   m ) ( 2 )

得证
欧拉降幂公式得证
AKAK%ϕ(m)+ϕ(m)( mod m)K>ϕ(m)(1) A K ≡ A K % ϕ ( m ) + ϕ ( m ) (   m o d   m ) K > ϕ ( m ) ( 1 )


  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值