常见概率面试题

这篇博客探讨了一道概率论题目,涉及n个人和k个陷阱,每个陷阱通过的概率为1/2。文章详细计算了掉入陷阱人数的期望值,通过组合数学和二项式定理得出答案为n-k/2。内容适合对概率论和数学期望感兴趣的读者。

面试题

有n个人,k个陷阱,每个陷阱通过的概率都是1/2,求通过人数的期望,k<=nk<=nk<=n

求掉入陷阱人数的期望

E=∑i=0i=k(1/2)k∗C(k,i)∗i=(1/2)k∗∑i=0i=kC(k,i)∗iE= \sum_{i=0}^{i=k}(1/2)^k*C(k,i)*i =(1/2)^k*\sum_{i=0}^{i=k}C(k,i)*iE=i=0i=k(1/2)kC(k,i)i=(1/2)ki=0i=kC(k,i)i
后者等于∑i=0i=kC(k,i)∗i=∑i=1i=kC(k−1,i−1)∗k=2k−1∗k\sum_{i=0}^{i=k}C(k,i)*i=\sum_{i=1}^{i=k}C(k-1,i-1)*k=2^{k-1}*ki=0i=kC(k,i)i=i=1i=kC(k1,i1)k=2k1k
E=k/2E = k/2E=k/2

答案就是 n−k/2n-k/2nk/2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值