面试题
有n个人,k个陷阱,每个陷阱通过的概率都是1/2,求通过人数的期望,k<=nk<=nk<=n
求掉入陷阱人数的期望
E=∑i=0i=k(1/2)k∗C(k,i)∗i=(1/2)k∗∑i=0i=kC(k,i)∗iE= \sum_{i=0}^{i=k}(1/2)^k*C(k,i)*i =(1/2)^k*\sum_{i=0}^{i=k}C(k,i)*iE=i=0∑i=k(1/2)k∗C(k,i)∗i=(1/2)k∗i=0∑i=kC(k,i)∗i
后者等于∑i=0i=kC(k,i)∗i=∑i=1i=kC(k−1,i−1)∗k=2k−1∗k\sum_{i=0}^{i=k}C(k,i)*i=\sum_{i=1}^{i=k}C(k-1,i-1)*k=2^{k-1}*k∑i=0i=kC(k,i)∗i=∑i=1i=kC(k−1,i−1)∗k=2k−1∗k
E=k/2E = k/2E=k/2
答案就是 n−k/2n-k/2n−k/2