803. 打砖块
有一个 m x n 的二元网格,其中 1 表示砖块,0 表示空白。砖块 稳定(不会掉落)的前提是:
一块砖直接连接到网格的顶部,或者
至少有一块相邻(4 个方向之一)砖块 稳定 不会掉落时
给你一个数组 hits ,这是需要依次消除砖块的位置。每当消除 hits[i] = (rowi, coli) 位置上的砖块时,对应位置的砖块(若存在)会消失,然后其他的砖块可能因为这一消除操作而掉落。一旦砖块掉落,它会立即从网格中消失(即,它不会落在其他稳定的砖块上)。
返回一个数组 result ,其中 result[i] 表示第 i 次消除操作对应掉落的砖块数目。
注意,消除可能指向是没有砖块的空白位置,如果发生这种情况,则没有砖块掉落。
思路
- 可以想到,只要连通着顶部的砖头的石头,都是稳定砖头,也就是一个连通分量。
- 打掉一个砖头后,相当于将一个连通分量拆成两部分。
- 因此可以逆序使用并查集,首先讲待打碎的砖头打碎,然后创建并查集,然后逆序将砖头补上,补上后有多少砖头可以变成稳定,就证明打碎时有多少砖头掉落。
- 创建一个特殊节点,表示屋顶
代码
class Solution {
private:
vector<int> father;
//用于计算节点有多少个砖头
vector<int> count;
int m, n;
int dx[4] = {-1, 0, 1, 0};
int dy[4] = {0, -1, 0, 1};
public:
int find(int x) {
if(father[x] == x) {
return x;
}
return father[x] = find(father[x]);
}
void join(int x, int y) {
int fx = find(father[x]);
int fy = find(father[y]);
if(fx == fy) {
return;
}
father[fx] = fy;
count[fy] += count[fx];
}
void init(int size) {
father.resize(size);
count.resize(size);
for(int i = 0; i < size; i++) {
father[i] = i;
count[i] = 1;
}
}
int getCount(int x) {
int fx = find(x);
return count[fx];
}
int getIndex(int x, int y) {
return x * n + y;
}
bool inplace(int x, int y) {
return x >= 0 && x < m && y >= 0 && y < n;
}
vector<int> hitBricks(vector<vector<int>>& grid, vector<vector<int>>& hits) {
m = grid.size();
n = grid[0].size();
int size = m * n;
init(size + 1);
//击碎砖头
vector<vector<int>> status = grid;
for(auto& hit : hits) {
status[hit[0]][hit[1]] = 0;
}
//连通屋顶和第一层节点
for(int j = 0; j < n; j++) {
if(status[0][j] == 1) {
join(j, size);
}
}
//遍历剩余层节点
for(int i = 1; i < m; i++) {
for(int j = 0; j < n; j++) {
if(status[i][j] == 1) {
//计算上面是否有砖头可以连通
if(status[i - 1][j] == 1) {
join(getIndex(i, j), getIndex(i - 1, j));
}
//左边
if(j > 0 && status[i][j - 1] == 1) {
join(getIndex(i, j), getIndex(i, j - 1));
}
}
}
}
//逆序补砖头
int len = hits.size();
vector<int> ans(len, 0);
for(int i = len - 1; i >= 0; i--) {
int x = hits[i][0];
int y = hits[i][1];
//击碎点没有砖头,跳过该情况
if(grid[x][y] == 0) {
continue;
}
//计算连通屋顶的砖头
int org = getCount(size);
//如果击碎点是第一层,连通
if(x == 0) {
join(y, size);
}
//上下左右寻找是否有砖头,连通起来
for(int k = 0; k < 4; k++) {
int next_x = x + dx[k];
int next_y = y + dy[k];
if(inplace(next_x, next_y) && status[next_x][next_y] == 1) {
join(getIndex(x, y), getIndex(next_x, next_y));
}
}
//计算连通后连接屋顶数量
int now = getCount(size);
ans[i] = max(0, now - org - 1);
//补上砖头
status[x][y] = 1;
}
return ans;
}
};