You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by
any combination of the coins, return -1.
Example 1:
coins = [1, 2, 5], amount = 11
return 3 (11 = 5 + 5 + 1)
Example 2:
coins = [2], amount = 3
return -1.
Note:
You may assume that you have an infinite number of each kind of coin.
这个问题经典的动态规划很多教程上面都有方法和以前一样,想办法和以前的建立联系(这也就是重复子问题)怎么证明最优子结构(我是靠直觉)
这次直接给代
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
if(coins.size()==0 || amount == 0 )return 0;
int dp[amount+1] ;
for(int i=0; i<=amount ;i++)
{
dp[i]=0;
}
for(int i=0;i<coins.size();i++)
{
if(coins[i]<=amount)
{
dp[coins[i]]=1;
}
}
for(int i=1 ;i<=amount ;i++)
{
for(int j=0;j<coins.size();j++)
{
if(i-coins[j]>0)
{
if(dp[i]&&dp[i-coins[j]])
{
dp[i]=min(dp[i],dp[i-coins[j]]+1);
}
else if(dp[i-coins[j]])
{
dp[i]=dp[i-coins[j]]+1;
}
}
}
}
if(dp[amount]==0) return -1;
return dp[amount];
}
};

本文介绍了一种使用动态规划解决硬币找零问题的方法。该方法通过构建一个动态规划数组来找出组成特定金额所需的最少硬币数量。文章还提供了一个C++实现示例。
1123

被折叠的 条评论
为什么被折叠?



