Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
直接贴图吧文字不好讲解
主要看右边这样我们观察当n=2时的两个和n=3时的5个我们发现dp【3】=dp【2】*2+1(当然这不是动态转移)
再看(自己写一个有14个)观察发现dp【4】=dp【3】*2+。。。。(因为对于dp【3】的5个而言4可以在其中任意一个中找到两个不同的插入位置)
再看dp【4】=dp【3】*2+dp【2】*dp【1】+。。。(因为固定2的两种方式,4插入其中的结点只有一中,接下来是3结点的自由组合,这里还不明显)
接着看dp【4】=dp【3】*2+dp【2】*dp【1】+dp【1】*dp【2】(因为固定一个根结点1,4插入位置只有1个,接下来是结点2,3的自由组合)
自己分析下dp【5】(要和前面建立联系,不能瞎建,注意逻辑)
接下来代码
class Solution {
public:
int numTrees(int n) {
int dp[n+1];
for(int i=0;i<=n;i++)
{
dp[i]=0;
}
dp[0]=0;
dp[1]=1;
for(int i=1;i<=n;i++)
{
for(int j=0;j<i-1;j++)
{
if(j==0)
{
dp[i]+=dp[i-1]*2;
}
else
{
dp[i]+=dp[i-j-1]*dp[j];
}
}
}
return dp[n];
}
};