动态规划中级教程 96. Unique Binary Search Trees

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

直接贴图吧文字不好讲解

图片主要看右边这样我们观察当n=2时的两个和n=3时的5个我们发现dp【3】=dp【2】*2+1(当然这不是动态转移)

再看(自己写一个有14个)观察发现dp【4】=dp【3】*2+。。。。(因为对于dp【3】的5个而言4可以在其中任意一个中找到两个不同的插入位置)

再看dp【4】=dp【3】*2+dp【2】*dp【1】+。。。(因为固定2的两种方式,4插入其中的结点只有一中,接下来是3结点的自由组合,这里还不明显)

接着看dp【4】=dp【3】*2+dp【2】*dp【1】+dp【1】*dp【2】(因为固定一个根结点1,4插入位置只有1个,接下来是结点2,3的自由组合)

自己分析下dp【5】(要和前面建立联系,不能瞎建,注意逻辑)

接下来代码

class Solution {
public:
    int numTrees(int n) {
        int dp[n+1];
        for(int i=0;i<=n;i++)
        {
            dp[i]=0;
        }
        dp[0]=0;
        dp[1]=1;
        for(int i=1;i<=n;i++)
        {
            for(int j=0;j<i-1;j++)
            {
                if(j==0)
                {
                    dp[i]+=dp[i-1]*2;
                }
                else
                {
                    dp[i]+=dp[i-j-1]*dp[j];
                }
            }
        }
        return dp[n];
    }
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值