MapReduce-YARN-HDFS任务提交全流程图解(wordcount为例)

这次的博客只有一张图,内容如题

(下次会把spark的yarn-client和yarn-cluster的全流程图附上)

### Hadoop WordCount 程序执行失败原因分析 Hadoop WordCount 程序在执行过程中可能会因多种因素而失败。以下是可能的原因及其对应的解决方案: #### 1. 输出目录已存在 如果目标输出目录 `/output` 已经存在于 HDFS 中,则再次运行 `wordcount` 命令时会引发错误,因为 MapReduce 不允许覆盖现有的输出目录[^1]。 **解决方案**: 在重新提交作业之前,可以手动删除已经存在的输出目录或者通过脚本自动清理旧数据后再运行新任务。具体操作如下所示: ```bash hdfs dfs -rm -r /output ``` #### 2. 输入路径不存在或不可访问 当指定的输入路径 `/input` 在 HDFS 上找不到时,也会导致程序终止并抛出异常消息[^3]。 **验证方法与修复措施**: 使用下面这条指令来确认是否有有效的文件位于所给定的位置上。 ```bash hdfs dfs -ls /input ``` 如果没有找到任何条目,则需要上传必要的文档到这个位置再试一次新的计算流程启动过程。 #### 3. JAR 文件版本兼容性问题 不同版本之间可能存在API变更或其他内部实现差异,这可能导致某些特定功能不再正常工作甚至完全失效的情况发生[^4]. **建议做法**: 尝试更换成其他稳定版次比如(hadoop-mapreduce-examples-2.x.y),确保它们能够良好协作完成预期目的. #### 4. 配置参数设置不当 有时候由于集群配置文件中的选项被修改而导致默认行为改变也可能引起类似的状况出现;yarn-site.xml 或 core-site.xml 的相关内容调整之后未同步更新至所有节点之上等等情形均有可能造成影响.[^5] **检查清单包括但不限于以下几个方面:** - 是否正确设置了 fs.defaultFS 属性指向 namenode 地址. - 对于 large datasets 处理而言 memory limits 可能也需要适当增大. ```python print("以上即为针对'Hadoop WordCount'无法顺利运作的一些常见缘由探讨以及相应对策.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值