​英特尔哪吒开发板——Pixie Desk Robot开发实践

英特尔哪吒开发板——Pixie Desk Robot开发实践

收到了哪吒的板子,就迫不及待的尝试了,今天才有空整理一下发出来。之前一直想要复刻一个AI小机器人,我给它起名叫Pixie Desk Robot,具有语音唤醒、声纹识别、可接入大语言模型等功能。下面是基本工作流程,欢迎大家一起交流分享。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

一、基础环境搭建

在开始使用英特尔哪吒开发板之前,我们需要准备好基础的开发环境。首先需要安装Ubuntu操作系统(20.04 LTS版本)。

二、核心功能实现

1. Wi-Fi配网功能

实现了便捷的Wi-Fi配网功能,支持以下方式:

  • 蓝牙配网
  • 热点配网
  • 声波配网

python
def wifi_config():

在这里插入图片描述

Wi-Fi配网代码示例

wifi_manager = WifiManager()
wifi_manager.start_config_mode()

2. 多模式唤醒机制

BOOT键唤醒
  • 支持硬件BOOT键唤醒
  • 可自定义唤醒动作
  • 支持打断当前对话

c
void boot_wakeup_init() {
gpio_config_t io_conf;
io_conf.pin_bit_mask = (1ULL<<BOOT_PIN);
io_conf.mode = GPIO_MODE_INPUT;
gpio_config(&io_conf);
}

离线语音唤醒
  • 集成snowboy离线唤醒引擎
  • 支持自定义唤醒词
  • 低功耗运行

在这里插入图片描述

3. 多语言语音识别

支持五种语言的实时识别:

  • 国语
  • 粤语
  • 英语
  • 日语
  • 韩语

使用WebSocket实现流式语音传输:

python
async def voice_stream():
async with websockets.connect(ws_url) as ws:
while True:
audio_data = await get_audio()
await ws.send(audio_data)

4. 声纹识别系统

基于3D Speaker项目实现:

  • 支持多人声纹注册
  • 实时声纹识别
  • 个性化响应

在这里插入图片描述

5. 大模型集成

TTS系统
  • 集成大模型TTS
  • 支持多种音色切换
  • 可配置提示词
AI对话引擎
  • 接入Qwen2.5 72B/豆包API
  • 支持上下文理解
  • 自动记忆总结

python
def generate_memory():
summary = model.summarize(conversation)
memory_db.save(summary)

6. 扩展显示功能

集成液晶显示屏:

  • 实时显示信号强度
  • 显示系统状态
  • 支持自定义界面

python
def update_display():
display.clear()
display.show_signal_strength()
display.show_status()

三、性能优化

1. 语音处理优化

  • 使用CUDA加速语音处理
  • 优化音频缓冲区大小
  • 实现流式处理减少延迟

2. 内存管理

  • 优化模型加载
  • 实现显存自动回收
  • 控制并发处理数量

四、注意事项

  1. 语音唤醒:

    • 调整麦克风增益
    • 优化环境噪声处理
    • 定期更新唤醒模型
  2. 网络连接:

    • 保持稳定的网络环境
    • 实现断线重连机制
    • 本地缓存处理
  3. 系统维护:

    • 定期备份用户数据
    • 监控系统资源使用
    • 及时更新模型参数

五、未来改进

  1. 功能扩展:

    • 增加更多语言支持
    • 优化声纹识别准确率
    • 扩展显示功能
  2. 性能提升:

    • 引入更先进的AI模型
    • 优化本地处理能力
    • 提升响应速度

六、总结

通过这次开发实践,我们成功使用哪吒开发板实现了一个功能完整的智能语音助手系统。系统集成了多种先进技术,包括离线语音唤醒、多语言识别、声纹识别等。在开发过程中,我们特别注意了以下几点:

  1. 系统稳定性
  2. 用户体验优化
  3. 资源利用效率
  4. 可扩展性设计

这些经验对我们后续的开发工作具有重要的参考价值。我们也会及时总结问题,保持与社区的交流互动。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值