用Python绘制棒棒糖图表,真的好看!

本文介绍了如何使用Python绘制棒棒糖图表,以改善条形图在数据过多时的视觉效果。通过实例展示了如何读取数据、绘制条形图、添加散点、调整颜色、线条宽度以及隐藏底部标记等步骤,最终得到清晰易读的棒棒糖图表。同时,文章探讨了中国历年出生人口数据的变化趋势,提示出生人口减少的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



公众号后台回复“图书“,了解更多号主新书内容
     作者:小F
     来源:法纳斯特

条形图在数据可视化里,是一个经常被使用到的图表。

虽然很好用,也还是存在着缺陷呢。比如条形图条目太多时,会显得臃肿,不够直观。

棒棒糖图表则是对条形图的改进,以一种小清新的设计,清晰明了表达了我们的数据。

下面小F就给大家介绍一下,如何使用Python绘制棒棒糖图表。

使用到的是我国1949到2019年,历年的出生人口数据,数据来源国家统计局。

首先读取一下数据。

import pandas as pd
import matplotlib.pyplot as plt

# 读取数据
df = pd.read_csv('data.csv')
print(df)

结果如下。

数据集很简单,每行都只有一个年份和一个值。

先绘制一个带有每年数值的条形图。

# 绘制柱状图
plt.bar(df.Year, df.value)
plt.show()

两行代码,即可得到一张条形图图表,看起来确实是有点拥挤。

下面将最后一年,即2019年的数据区分出来。

给2019年的条形着色为黑色,其他年份为浅灰色。

并且在图表中添加散点图,可在条形图的顶部绘制圆形。

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))

# 年份数
n = len(df)
# 颜色设置
colors = ['black'] + ((n-1)*['lightgrey'])
plt.bar(df.Year, df.value, color=colors)
plt.scatter(df.Year, df.value, color=colors)
plt.show()

得到结果如下。

颜色已经修改成功,还需要调整一下条形图的宽度以及顶部圆圈的大小。

# width: 条形图宽度  s: 散点图圆圈大小
plt.bar(df.Year, df.value, color=colors, width=0.2)
plt.scatter(df.Year, df.value, color=colors, s=10)
plt.show()

结果如下。

比起先前的蓝色条形图图表,棒棒糖图表确实是好看了不少。

除了用条形图来绘制棒棒糖图表,还可以使用线条,这样整体的宽度会更加一致。

X将Year(年份)数据作为起点和终点,Y以-20和各年份数据作为起点和终点。

import pandas as pd
import matplotlib.pyplot as plt

# 读取数据
df = pd.read_csv('data.csv')
print(df)

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))

# 年份数
n = len(df)
# 颜色设置
colors = ['black'] + ((n-1)*['lightgrey'])
# 使用线条
for idx, val in df.iterrows():
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color=colors[idx])
plt.show()

得到结果如下。

可以使用参数标记在两端绘制圆,而不是只在顶部生成散点图。

然后可以通过更改y-limit参数来隐藏最底端的圆。

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))

# 年份数
n = len(df)
# 颜色设置
colors = ['black'] + ((n-1)*['lightgrey'])
# 使用线条, markersize设置标记点大小
for idx, val in df.iterrows():
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color=colors[idx],
             marker='o',
             markersize=3)

# 设置y轴最低值
plt.ylim(0,)
plt.show()

结果如下。

此外还可以调整lw、markersize参数,定义线条的粗细及标记的大小,甚至可以绘制两次线条以创建轮廓效果。

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))
color = 'b'

# 年份数
n = len(df)
# 颜色设置
colors = ['black'] + ((n-1)*['lightgrey'])
# 使用线条
for idx, val in df.iterrows():
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color='black',
             marker='o',
             lw=4,
             markersize=6)
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color=colors[idx],
             marker='o',
             markersize=4)

# 移除上边框、右边框
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)

# 设置x、y轴范围
plt.xlim(1948, 2020)
plt.ylim(0,)

# 中文显示
plt.rcParams['font.sans-serif'] = ['Songti SC']

plt.title('中国历年出生人口数据(万)', loc='left', fontsize=16)
plt.text(2019, -220, '来源:国家统计局', ha='right')

# 2019年出生人口数(显示)
value_2019 = df[df['Year'] == 2019].value.values[0]
plt.text(2019, value_2019+80, value_2019, ha='center')

# 保存图片
plt.savefig('chart.png')

得到结果如下。

黑色不是特别好看,改个颜色看看。

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))

# 年份数
n = len(df)
# 颜色设置
color = 'b'
colors = ['#E74C3C'] + ((len(df)-1)*['#F5B7B1'])
# 使用线条
for idx, val in df.iterrows():
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color=colors[idx],
             marker='o',
             lw=4,
             markersize=6,
             markerfacecolor='#E74C3C')

# 移除上边框、右边框
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)

# 设置x、y轴范围
plt.xlim(1948, 2020)
plt.ylim(0,)

# 中文显示
plt.rcParams['font.sans-serif'] = ['Songti SC']

plt.title('中国历年出生人口数据(万)', loc='left', fontsize=16)
plt.text(2019, -220, '来源:国家统计局', ha='right')

# 2019年出生人口数(显示)
value_2019 = df[df['Year'] == 2019].value.values[0]
plt.text(2019, value_2019+80, value_2019, ha='center')

# 保存图片
plt.savefig('chart.png')

得到结果如下。

现在对于条形图,你就有了另外一个选择,即棒棒糖图表。

此外我们也能了解到目前中国的新出生人口数量是越来越少,据说2020年出生人口降幅或超一成,未来几年恐跌破1000万...

◆ ◆ ◆  ◆ ◆麟哥新书已经在当当上架了,我写了本书:《拿下Offer-数据分析师求职面试指南》,目前当当正在举行活动,大家可以用相当于原价5折的预购价格购买,还是非常划算的:






数据森麟公众号的交流群已经建立,许多小伙伴已经加入其中,感谢大家的支持。大家可以在群里交流关于数据分析&数据挖掘的相关内容,还没有加入的小伙伴可以扫描下方管理员二维码,进群前一定要关注公众号奥,关注后让管理员帮忙拉进群,期待大家的加入。
管理员二维码:
猜你喜欢
● 卧槽!原来爬取B站弹幕这么简单● 厉害了!麟哥新书登顶京东销量排行榜!● 笑死人不偿命的知乎沙雕问题排行榜
● 用Python扒出B站那些“惊为天人”的阿婆主!● 你相信逛B站也能学编程吗
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值