自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

ServiceMesher

ServiceMesher社区,涵盖Kubernetes、Service Mesh、Istio、Serverless、Knative等云原生技术,分享开源技术干货

  • 博客(426)
  • 收藏
  • 关注

原创 用自然语言增强 Draw.io 的可视化工具

Next AI Draw.io 是一个基于 Next.js 的开源 Web 应用,旨在将 AI 能力无缝集成到 draw.io 图表编辑流程中。用户可以通过自然语言描述来创建、修改或增强图形元素,AI 提供结构化建议、自动布局与视觉改进,降低绘图门槛并加速原型设计。一个基于 Next.js 的开源 Web 应用,将 AI 能力与 draw.io 图表编辑结合以支持自然语言驱动的图形创建与增强。• AI 辅助的自动布局与视觉优化,提高图表可读性与美观度。• 社区驱动的代码库,利于观察性改进与功能定制。

2025-12-02 17:04:52 436

原创 PowerRAG:构建更智能的检索增强生成系统

项目在保持与 RAGFlow 接口兼容的同时,扩展了文档处理、结构化信息抽取、评估与反馈闭环等组件,便于开发者快速搭建可观测、可调优的问答、知识抽取与生成系统。PowerRAG 利用 OceanBase 的多模态一体化数据库能力(SQL + NoSQL)作为底层存储,提供混合索引检索、统一数据接入层与可扩展的原子化 API。PowerRAG 适用于需要高质量知识检索与文档理解的场景,例如企业知识库问答、合同与报表结构化抽取、行业文档搜索、以及线上模型效果评估与回归测试等。✍️ 作者:OceanBase。

2025-12-02 17:04:52 242

转载 云原生 + AI 双轮驱动!COSCon‘25 云原生开源论坛议程正式发布

从 2016 年 “源力觉醒” 点燃技术圈的小众星火,到 2024 年 “Open Source Open Life” 推动开源深度融入衣食住行的日常 —— COSCon 始终与中国开源同行,推动着开源从技术圈的 “小众实践”,成长为驱动产业创新的 “核心力量”。2025 年,站在第十年的里程碑节点,我们以 “众智开源 | Open Source, Open Intelligence” 为主题,聚焦 AI 与开源的深度融合,探索 “人类 + 机器” 协同创智的全新可能。云原生开源论坛议程正式发布。

2025-12-02 17:04:52 24

原创 PowerMem:面向长期记忆的高性能存储与检索

它结合向量检索、全文检索与图检索的混合检索架构,并引入认知科学中的艾宾浩斯遗忘曲线(Ebbinghaus forgetting curve)实现时效性权重管理,支持多模态(文本/图像/音频)内容的抽取与检索,适合作为对话系统、智能客服与长期上下文保持的记忆层。适用于需要长期上下文维护与高精度检索的场景,例如对话记忆层、客户历史记录检索、合同与报告的事实抽取、以及需要跨智能体协作的多智能体系统。面向 AI 应用的智能记忆系统,结合向量、全文与图检索并支持多智能体场景。🌐 个人网站:jimmysong.io。

2025-12-02 17:04:52 399

原创 以智能体方式自动执行机器学习工程任务

karpathy 是一个以“智能体”(agentic)范式实现的开源机器学习工程师,目标是自动化模型开发的常见任务,包括实验设计、数据预处理、模型训练与评估,以及在需要时触发部署或复现流程。项目同时提供可部署的前端与后端组件,并在官网展示项目概览与部署说明,便于团队在私有环境中进行试验与生产化落地。适用于希望降低模型迭代成本的研发团队与个人研发者:自动化实验管理与超参搜索、将训练变化快速反馈到评估/推理环境、在受控私有网络中进行安全部署,以及作为科研原型快速验证新想法的工具链组成部分。

2025-11-24 17:55:55 380

原创 企业级多智能体编排与生产就绪框架

Swarms 是一个企业级、面向生产的多智能体(智能体)编排框架,提供可扩展的多智能体架构、运行时与协议。它通过统一的 API 与工作流抽象,将复杂任务分解为协作的智能体网络,支持模型、工具与多种记忆系统的集成,并兼容模型上下文协议(MCP, Model Context Protocol)以实现工具调用与分布式部署。• 广泛的模型与协议集成(OpenAI、Anthropic、Hugging Face)与对外部索引/向量数据库的支持。一个面向生产的多智能体编排框架,提供可扩展的协作智能体运行时与协议。

2025-11-24 17:55:55 245

原创 自动生成与管理专业提示词,快速落地你的 Prompt 工程

YPrompt 是一个面向提示词(Prompt)生成与管理的开源系统,通过对话挖掘用户意图并自动生成专业提示词,支持系统/用户提示词的优化与版本管理。项目设计注重可部署性与可扩展性:采用轻量后端服务与静态前端构建,提供 Docker 镜像与配置化环境变量,支持本地持久化的数据目录与证书配置,便于在私有网络中安全运行;适用于需要系统化管理提示词与开展提示词工程的团队或个人场景,包括 Prompt 工程师的迭代优化、产品原型验证、内部知识库驱动的提示词管理,以及需要私有化部署的企业级应用。可在线体验 演示站。

2025-11-24 17:55:55 284

原创 TRAE SOLO 和 VS Code,谁才是你的 AI 工程实体最佳拍档?

• Agent HQ 的核心思路是:未来开发将依赖多个专长不同的 Agent 并行协作,GitHub 做的是“Agent 总部”,而非唯一工程 Agent,开发者可在统一控制平面调度 Agent,接入现有 GitHub Flow(Issue、PR、Review、CI/CD)。• GitHub 的 Agent HQ 是“AI 编码 Agent 的中枢平台”,统一控制平面,可接入 OpenAI、Anthropic、Google、xAI 等多家 Agent,并行跑、对比结果。”等提示,难以判断是卡死还是规划。

2025-11-24 17:55:55 872

原创 用自动化测试守住生成式 AI 上线质量

开发者和产品团队可用自然语言描述期望行为与禁止项,Rhesis 自动生成大量测试场景(包含对抗性提示与多轮对话),并将这些测试运行在目标应用上,以发现幻觉、信息泄露或不符合策略的回应。更多精彩内容,欢迎访问我的个人网站 jimmysong.io。一个面向 LLM 与智能体应用的开源测试平台与 SDK,用于自动生成测试场景并评估模型输出。• SDK 与 API 支持从 IDE 调用与脚本化测试,方便与现有开发与部署流程集成。• 自动化测试生成:基于用户需求自动生成单轮与多轮测试场景,覆盖对抗性与边界输入。

2025-11-21 10:44:36 327

原创 用声明式表格构建多模态 AI 数据流水线

它通过统一的表格接口管理图像、视频、音频与文档等非结构化数据,并将数据摄取、变换、索引与检索作为内建能力,降低构建生产级多模态应用的工程复杂度。Pixeltable 支持与大语言模型(LLM)与外部向量数据库(Vector DB)集成,便于实现检索增强生成(RAG)工作流。• 广泛模型与服务集成:内置对 OpenAI、Hugging Face、YOLOX 等模型与工具的适配器。• 将数据管道、特征工程与模型推理统一为可版本化、可回溯的表格操作,以支持生产化部署与审计。• 统一多模态表格接口:以。

2025-11-21 10:44:36 408

原创 Antigravity 上手指南:打造 VS Code 风格的 AI IDE

几天用下来,最大的感觉是:它更像一个“智能体(Agent)控制台”,而不是传统意义上的集成开发环境(IDE)。• GitHub 为我免费开通了 Pro 账户,虽然每月 premium 调用额度只有 300 次,但是结合其他插件,比如 AMP、Codex、Droid、Qwen 等,可以实现更高效的工作流程。在迁移 IDE 时最大的痛点就是用户习惯问题,通过安装一些列插件和配置,可以让 Antigravity 更像 VS Code,在保留用户习惯的基础上增加 Open Agent Manager 功能。

2025-11-21 10:44:36 3132

原创 面向 MCP 开发者的一体化调试与管理工具

OpenMCP Client 是面向 MCP(模型上下文协议,Model Context Protocol)开发者的开源工具套件,提供 VS Code 插件、独立调试面板与配套 SDK,用于本地调试、交互测试与项目级管理。它将提示管理、工具联调、交互测试与项目配置整合为可视化工作流,帮助开发者在本地重现并迭代智能体的行为与工具调用,缩短从调试到部署的周期。一款为 MCP 开发与调试设计的开源工具集,集成 VS Code 插件、调试面板与 SDK,简化项目从调试到部署的流程。• 快速部署路径:与。

2025-11-21 10:44:36 319

原创 大量可复用的 n8n 自动化工作流合集

N8N Workflows Catalog 是一个面向 n8n 社区的开源目录,旨在归档并以最小可移植格式保存来自官方与社区的公开工作流。N8N Workflows Catalog 为需要快速搭建或学习 n8n 自动化的用户提供了丰富且结构化的工作流资源库,是社区共享与知识保留的重要补充。一个面向 n8n 社区的工作流目录,收集并归档可导入的自动化模板以便重用与版本化。• 迁移与备份:企业或个人可以将关键工作流版本化存档,便于审计与回滚。• 社区驱动:接受社区贡献与更新,便于保存有价值的自动化方案。

2025-11-20 08:30:12 373

原创 Cloudflare 全网故障背后的隐性假设与 AI 基础设施风险,你真的了解吗?

由于本站托管在 Cloudflare 上,也未能幸免。这也是本站上线 8 年来,极少数因故障而无法访问的情况(上一次是 GitHub Pages 故障,发生在微软收购 GitHub 的那年)。现代互联网基础设施的最大风险,往往不是代码本身,而是那些未被显式定义的隐性假设和自动化配置链路。Cloudflare 的这次故障,是所有 Infra/AI 工程师都必须正视的警钟。分析 Cloudflare 2025 年 11 月 18 日全网故障,探讨隐性假设、自动化配置链路与现代基础设施的系统性风险。

2025-11-20 08:30:12 865

原创 用 LLM 一起逐章阅读 EPUB 的轻量工具

是一个极简的自托管 EPUB 阅读器,设计为按章节逐步展示书籍内容,便于将每章复制粘贴到大语言模型(LLM, Large Language Model)中一起阅读或辅助理解。项目通过将 EPUB 文件解析为章节并提供本地静态页面,降低了与模型交互的复杂度,适合作为学习示例或个人工具。)来启动程序并生成章节目录。• 轻量自托管:单文件脚本与简单静态服务器,易于本地运行与定制。• 教学与示例:用于演示如何把书籍内容与模型组合,教学场景友好。• 逐章阅读:按章节展示 EPUB 内容,方便逐段与模型交互。

2025-11-20 08:30:12 313

原创 终端原生的 DevOps 智能体,Rust 实现的开源工具

Stakpak Agent 是一款终端原生的 DevOps 智能体,由 Rust 开发,旨在在本地或 CI 环境中安全地执行命令、搜索文档、编辑文件并生成高质量的基础设施即代码(IaC)。该项目强调安全性与可控性,适合在开发者工作流中作为可编排的智能体助手,帮助自动化常见运维与开发任务。• 文件与命令操作:支持编辑文件、执行 shell 命令与交互式任务。• 支持与 LLM 及本地工具结合的流水线,用于生成与验证代码片段。• 安全与合规:设计上注重最小权限与可审计的操作记录。✍️ 作者:Stakpak。

2025-11-19 11:11:40 320

原创 NotebookLM:我目前最常用、也最愿意推荐的 AI 学习与内容组织工具

作为一个长期学习主义者、读技术规范、研究开源项目的人,我一直在寻找一种工具,能在我面对海量资料时替我“抄近道”、减少机械性阅读、帮我快速建立全局理解。越用越觉得,它对我学习新技术、理解陌生领域、整理大项目文档、构建教学材料的帮助,是其他通用大语言模型(LLM, Large Language Model)给不了的。基于我持续数月的深度使用体验,分析 NotebookLM 如何帮助我更高效地学习新技术、阅读庞杂文档、生成教学大纲,并给出未来期待的改进方向。我很依赖 MindMap 来构建“知识的骨架”。

2025-11-19 11:11:40 735

原创 开源的 RAG 平台,适合构建智能体研究与产品

Agentset 是一个面向检索增强生成(RAG)的开源平台,目标在于帮助开发者与研究者快速构建具有引用能力和长期记忆管理的智能体。平台支持 22+ 种文件格式的解析与分区,提供内置的引证(citations)与文档检索流程,便于将外部知识高效接入智能体的上下文中,从而提升回答的准确性与可溯源性。一个面向检索增强生成(RAG)的开源平台,提供多文件格式支持、内置引用与分区能力以简化知识库构建。• 引用与溯源:内置 citation 管道,输出结果可关联原始文档位置,便于验证与合规。

2025-11-19 11:11:40 370

原创 面向大规模 API 调用的自反分层智能体——AnyTool

AnyTool 是论文《AnyTool: Self-Reflective, Hierarchical Agents for Large-Scale API Calls》的开源实现,旨在构建具自反能力与分层决策的智能体,用于在大规模 API 调用场景中自动选择、组合与验证多种接口。• 工具与数据支持:集成 ToolBench 数据集与 AnyToolBench 示例数据,包含预处理与生成脚本。• 教学与复现:用于学习分层智能体设计与复现实验结果的教学资源。🌐 个人网站:jimmysong.io。

2025-11-19 11:11:40 282

转载 用 worktree 并行开发更顺畅?试试 gtr

它以配置优先而非命令行标志的策略管理行为,支持 shell 补全、平台感知的路径处理及可插拔的适配器体系(编辑器与 AI 工具适配器)。,并提供编辑器与 AI 工具的集成能力。它通过简化工作树创建、自动复制配置文件、可选的依赖安装与钩子执行,降低了在多个分支/工作空间之间同时开发与审查的认知负担。• AI 工具支持:可在工作树内启动 Aider、Claude 等终端/编辑器智能体,便于并行的智能体协作。• 编辑器集成:支持 Cursor、VS Code、Zed 等编辑器,一键在对应工作树中打开工程。

2025-11-18 10:04:34 39

原创 把可移植的开发环境带到任何地方,你试过 Flox 吗?

Flox 是一个以 Nix 为核心的可移植开发环境与包管理工具,旨在为开发者提供可复现、可分享、跨生命周期的一致环境。通过环境分层与依赖替换,Flox 允许在本地开发、CI 管道与镜像构建之间保持同一套运行时,从而减少“在我电脑上能跑”的问题。许可证为 GPL-2.0。Flox 适用于需要环境一致性与可分享能力的项目,例如多模块微服务开发、CI 构建流水线、教学镜像与企业级开发平台。一个以 Nix 为核心、可复现且可分享的开发环境与包管理工具。• 环境分享:支持将环境打包并与他人共享,便于协作与复现场景。

2025-11-18 10:04:34 279

原创 云原生的下半场已开启,AI Native 平台工程如何重塑技术格局?

自 2015 年接触 Docker 和 Kubernetes 起,我始终沿着云原生主线前行:从最初在 YAML 里写 Deployment,到探索 Service Mesh、可观测性,再到近两年聚焦 AI Infra 与 AI Native 平台。对我而言,过去十年关注“如何让应用在云原生世界里更稳”,未来十年则聚焦“如何让 AI 在云原生世界里更好、更安全、更可控”。本文将回顾云原生的上一个十年,并结合 KubeCon NA 2025 的内容,梳理关键拐点与下一个十年的技术坐标系。

2025-11-18 10:04:34 412

原创 用一条命令本地运行并部署分布式 .NET 应用?试试 Aspire

它通过统一的应用模型将服务、资源与连接声明为单一的来源,从而让开发者能够用一条命令在本地启动、调试整个应用,并使用相同的组合(composition)将应用部署到 Kubernetes、云端或自有服务器上。Aspire 以 .NET 生态为核心,提供跨平台的 CLI 与仪表盘,包含项目模板、服务发现、可观测性集成与生成的部署清单。Aspire 适用于需要快速在本地迭代并最终部署到生产环境的分布式 .NET 应用场景,例如微服务组合、本地集成测试、CI 验证管道与团队协作调试。

2025-11-18 10:04:34 351

原创 Kimi K2:国产模型终于走上思维路线,你怎么看?

K2 最重要的特性是整体训练路线:专家分工、长上下文驱动一致性、工具调用通过真实执行训练、浏览器任务与长步骤任务强化、INT4 进入训练闭环。但 K2 是第一个明确走上深度推理、工具交织、认知分工、长期任务链、原生性能优化的路线。本文拆解其技术路线、核心理念、MoE 专家分工、工具链交织推理路径,并分析其与国际前沿 Claude/Gemini 的路线关系。国产大模型的叙事正在从“Chat 型模型”,转向“思维型模型(Thinking Model, Thinking Model)”。

2025-11-17 12:07:41 341

原创 AutoSubs:本地一键生成高质量字幕

AutoSubs 是一款面向创作者的本地桌面应用,提供一键生成字幕的能力,既可以作为独立程序运行,也可与 DaVinci Resolve 深度集成。它支持多语言转录、说话人分离与英文翻译,提供可视化的字幕编辑器与多轨输出,旨在提升字幕制作效率与准确性。它集成了多种语音识别模型与说话人分离算法,提供灵活的模型选择与高效的字幕定时精调能力。在本地或与 DaVinci Resolve 集成,快速生成可编辑且精确的字幕。• 现代化的字幕编辑器,支持每说话人样式与导出多种格式。• 快速准确的多语言转录与说话人分离。

2025-11-17 12:07:41 434

原创 在终端试试 qqqa,轻量且无状态的 LLM 助手

它采用无状态设计,每次运行都是独立的,便于与 Unix 管道、脚本和 CI 流程组合。qqqa 支持多种模型提供者配置,并可在本地或远程运行,通过配置文件或环境变量切换后端服务。• 多提供者支持(如 OpenRouter、Groq、Ollama、本地 CLI 提供者),便于在不同环境下切换大语言模型(LLM, Large Language Model)。一个面向命令行的开源、无状态大语言模型工具,提供快速问答与单步智能体功能。• 通过配置不同提供者,利用云端或本地模型实现成本/速度权衡与隐私控制。

2025-11-17 12:07:41 406

原创 Hopx:面向智能体的快速隔离沙箱

Hopx 是一个面向智能体的云端运行时,提供毫秒级启动的隔离微虚拟机与多语言 SDK,方便将大语言模型(LLM, Large Language Model)驱动的智能体部署到受控且安全的执行环境中。通过 Firecracker 提供安全边界、通过快照实现快速启动,并支持与 MCP 协议集成,方便将 Hopx 作为智能体执行后端在生产环境中部署与扩展。适合需要在受控环境中执行不受信任代码的场景,例如:由大语言模型驱动的智能体运行、数据分析与交互式笔记本、长期后台作业、桌面自动化与工具集成。

2025-11-17 12:07:41 409

转载 在 React 中快速搭建 AI 聊天界面

Assistant-UI 是一个基于 TypeScript 与 React 的开源组件库,提供可定制的聊天界面组件与布局,专为构建智能体、AI 助手与对话式产品设计。它覆盖消息流、输入区、富媒体渲染、系统提示与插件扩展点,支持主题化与无障碍优化,便于与后端推理服务、模型网关或代理层集成,帮助团队快速搭建生产级聊天前端。• 组件化:提供消息列表、消息项、输入框、工具栏等可组合组件,并支持自定义渲染器与样式覆盖。• 多模型支持:可与后端模型网关或路由层配合,便于在不同模型间切换与对比输出。

2025-11-14 11:26:53 50

转载 CellARC:面向 ARC 风格任务的数据集生成与加载工具

• 数据集生成与快照:支持从 Hugging Face Hub 下载预构建快照,并提供 100k 的主数据集与固定的 100 条子集用于快速迭代。一个用于生成、发布与加载 CellARC(基于元胞自动机任务)的开源数据集与工具链,支持 Hugging Face 快速下载与仿真可视化。• 仿真与可视化:内置 CA(Cellular Automaton)回放与 episode 卡片显示函数,方便检查生成规则与样例表现。• 算法测试与教材:用于教学、实验与基线对比,快速复现论文中的训练/评估流程。

2025-11-14 11:26:53 22

转载 云原生大模型推理四件套如何协同构建高效推理体系?

云原生大模型推理“四件套”——KServe、vLLM、llm-d、WG Serving——正在推动推理体系的标准化、模块化与生态融合。云原生与 AI 原生架构师必读:KServe、vLLM、llm-d、WG Serving 如何形成大模型推理的云原生“四件套”,各自定位与组合优势,以及生态融合趋势分析。,就像 Ingress 定义 HTTP 服务入口一样,它定义了推理请求在 Kubernetes 内的标准语义与网关行为,使推理系统可组合、可观测、可扩展。大模型推理正在从单机加速器时代迈向云原生分布式体系。

2025-11-14 11:26:53 47

转载 探索 Below — 回放并分析历史 Linux 指标

它支持实时(live)观察、记录(record)守护进程、以及回放(replay)历史快照,方便在事后对性能事件、资源使用趋势与 cgroup 层级进行深度分析。Below 将系统指标以可脚本化的格式导出,适合与现有监控生态(例如 Prometheus/Grafana)集成。• 能记录并重放系统级别的资源利用信息,包括进程、cgroup 层次结构与压力等待信息(PSI)。• 集群与容器监控:与 Prometheus/Grafana 集成,作为补充的事件回溯工具。🌐 个人网站:jimmysong.io。

2025-11-14 11:26:53 23

原创 Ingress NGINX 退役,云原生基础设施如何应对技术债与迁移挑战?

我正在研究的 AI-Native(AI 原生)基础架构——推理路由、模型网关、AI Gateway、Agent Orchestrator——也会走类似路径:从早期的灵活 hack,到成熟的标准化、治理化 API。作为长期推动 Kubernetes 与云原生实践的人,我既经历过 Ingress NGINX 的辉煌时代,也见证了它的技术债一步步堆积。云原生基础设施的演进,最终都要面对技术债与治理的现实。未来 Infra 的门槛将更高,对安全、可维护性要求更严,个人英雄式的核心维护者模式会持续失效。

2025-11-13 10:19:50 978

原创 Ming-UniAudio:统一语音理解、生成与编辑的新范式

它通过 MingTok-Audio 将语音的语义与声学特征在连续表示中融合,构建了一个既能理解又能生成语音的端到端模型。Ming-UniAudio 适用于语音转写、文本到语音合成(TTS, Text-to-Speech)、对话理解、音频后期编辑与增强等场景。研究团队与工程团队可以用它构建带有编辑能力的语音助手、自动化音频后处理流水线,或集成到多模态交互系统中以提升语音内容的可编辑性与表达力。一个以统一连续语音分词器为核心、同时支持语音理解、生成与自由形式编辑的语音大模型框架。✍️ 作者:蚂蚁集团。

2025-11-13 10:19:50 311

原创 用 ADK Web 快速调试你的智能体开发体验

Agent Development Kit Web(ADK Web)是 Google 为 Agent Development Kit 提供的内置开发者界面,旨在简化智能体(智能体)开发、调试与交互流程。ADK Web 与 ADK 的后端组件配合使用,提供可视化的任务流展示、交互式调试面板和示例工程,帮助开发者从本地调试快速验证智能体行为。Google 提供的内置开发者界面,用于结合 Agent Development Kit 进行智能体开发与调试。• 开发与调试智能体逻辑与工作流。

2025-11-13 10:19:50 364

原创 将 Stripe API 与智能体工具链无缝集成

适用于需要将支付或计费流纳入 AI 产品的场景,例如为付费 API 请求计费的模型服务、在智能体执行支付相关操作(如创建支付链接)时进行安全授权、或在产品中对模型使用量进行计费与结算。Stripe AI 是 Stripe 提供的一套开源工具与 SDK,旨在把支付、计费与相关 API 无缝集成到 LLM 与智能体(智能体)工作流中。更多精彩内容,欢迎访问我的个人网站 jimmysong.io。Stripe 提供的开源 AI 工具集与 SDK,帮助开发者将支付与账单功能安全地集成到 LLM 与智能体工作流中。

2025-11-13 10:19:50 366

原创 什么样的 AI 平台算得上 Kubernetes 原生?

CNCF 推出 AI Conformance 的核心目的,是通过统一标准,让 AI 平台在不同云、不同集群中都能保持一致行为,成为生态的共同语言,类似于 “Certified Kubernetes” 的作用。本文解读 CNCF 的 Kubernetes AI Conformance 项目,深入分析一个 AI 平台要达到 Kubernetes 原生标准需满足的架构、调度、存储、网络与互操作性要求。同时,平台应能直接集成 Kubeflow、Ray、KServe、Triton 等主流生态组件,实现高度互操作性。

2025-11-12 12:05:56 704

原创 想系统学机器人算法?试试 PythonRobotics

PythonRobotics 是一个以 Python 实现的机器人算法代码集合与在线教材,涵盖定位、地图构建、SLAM、路径规划(Path Planning)、轨迹跟踪和控制等模块。项目强调代码可读性与最小依赖,配套大量动画示例与在线文档,便于读者从算法原理快速过渡到代码实现与可视化理解。• 覆盖面广:包含定位、映射、SLAM、路径规划、轨迹跟踪、控制与机械臂等多个领域的典型算法。• 易读实现:每个算法以简洁、可运行的 Python 示例呈现,便于教学与实验。🌐 个人网站:jimmysong.io。

2025-11-12 12:05:56 241

原创 试试支持 1600+ 语言的开源语音识别系统

仓库包含完整的数据准备、训练配方、评估与推理流水线,并在 Hugging Face 发布了数据集与演示空间,方便研究者复现与扩展。• 结合自监督学习(W2V)、CTC 与基于大语言模型(LLM, Large Language Model)的 ASR 方案,兼顾通用性与精度。• 开放的数据集(CC-BY-4.0)与 Hugging Face 演示,便于测试与基准评估。• 透明的配置与资产管理(模型、分词器、数据集),简化模型下载、缓存与复现流程。• 覆盖 1600+ 语言的多语种支持与语言条件化流程。

2025-11-12 12:05:56 416

原创 试试开源的 diffusion LLM:Open-dLLM

Open-dLLM 是一个面向扩散式大语言模型(大语言模型(LLM, Large Language Model))的开源工程,目标是提供从原始数据处理、预训练、评估到推理与权重发布的完整流程。项目同时包含用于代码生成的变体 Open-dCoder,并发布了对应的检查点与评估套件,便于在研究与工程环境中复现扩散 LLM 的训练与推断流程。一个针对扩散式大语言模型(Open-dLLM)的完整开源实现,覆盖从预训练到评估与推理的全流程。• 教学与基准测试:作为开源的基准库用于教学与研究复现,并可用于对比实验。

2025-11-12 12:05:56 316

原创 Atlas 能否成为开发者的默认 AI 浏览器?我的两周深度体验

作为一个长期同时使用多种开发工具的用户,包括 ChatGPT(GPT-4/5、Codex、o1 系列)、Chrome(多 Tab、高密度检索)、VSCode(本地工程环境)、macOS ChatGPT Desktop(本地上下文读取)、以及本地 Hugo / Flask / FastAPI 调试环境,我在看到 Atlas 的设计理念后,第一时间将其作为主力浏览器。Atlas 的 DevTools 本身是完整的 Chromium 套件,调试 HTML、网络请求、性能、控制台等都完全可用。

2025-11-11 11:03:51 902

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除