proof_LDPC

Proof

lemma 1

含偶数个1的概率

在这里插入图片描述

假设: f ( x ) = ∏ l = 1 m [ ( 1 − p k ) + p k x ] f\left( x\right) =\prod^{m}_{l=1} \left[ \left( 1-p_{k}\right) +p_{k}x\right] f(x)=l=1m[(1pk)+pkx]展开二项式, x 2 k x^{2k} x2k项的系数就是出现2k个1的概率,展开式中偶数项和就是m长二元序列中含有偶数个1的概率。根据二项式的性质:偶数项的系数和
a 0 + a 2 + a 4 + a 6 + ⋯ ⋯ = f ( 1 ) + f ( − 1 ) 2 = ∏ k = 1 m [ ( 1 − p k ) + p k ] + ∏ k = 1 m [ ( 1 − p k ) − p k ] 2 = 1 + ∏ k = 1 m [ 1 − 2 p k ] 2 \begin{matrix}a_{0}+a_{2}+a_{4}+a_{6}+\cdots \cdots &=\frac{f\left( 1\right) +f\left( -1\right) }{2} =\frac{\prod^{m}_{k=1} \left[ \left( 1-p_{k}\right) +p_{k}\right] +\prod^{m}_{k=1} \left[ \left( 1-p_{k}\right) -p_{k}\right] }{2} \\ &=\frac{1+\prod^{m}_{k=1} \left[ 1-2p_{k}\right] }{2} \\ \end{matrix} a0+a2+a4+a6+=2f(1)+f(1)=2k=1m[(1pk)+pk]+k=1m[(1pk)pk]=21+k=1m[12pk]

含奇数个1的概率

在这里插入图片描述

1 − f ( 1 ) + f ( − 1 ) 2 = 1 − ∏ k = 1 m [ 1 − 2 p k ] 2 1-\frac{f\left( 1\right) +f\left( -1\right) }{2} =\frac{1-\prod^{m}_{k=1} \left[ 1-2p_{k}\right] }{2} 12f(1)+f(1)=21k=1m[12pk]

校验节点

在这里插入图片描述

校验节点将收集的变量节点信息(除 x i x_i xi)校验结果概率发送给变量节点 x i x_i xi
r j i ( 0 ) = 1 2 + 1 2 ∏ i ′ ∈ V j \ i ( 1 − 2 q i ′ j ( 1 ) ) r_{ji}(0)=\frac{1}{2} +\frac{1}{2} \prod_{i^{\prime }\in V_{j}\backslash i} \left( 1-2q_{i^{\prime }j}(1)\right) rji(0)=21+21iVj\i(12qij(1))
r j i ( 1 ) = 1 2 − 1 2 ∏ i ′ ∈ V j \ i ( 1 − 2 q i ′ j ( 1 ) ) r_{ji}(1)=\frac{1}{2} -\frac{1}{2} \prod_{i^{\prime }\in V_{j}\backslash i} \left( 1-2q_{i^{\prime }j}(1)\right) rji(1)=2121iVj\i(12qij(1))

变量节点

在这里插入图片描述

变量节点接受来自校验节点的信息,发送给校验节点 f j f_j fj

q i j ( 0 ) = ( 1 − P i ) ∏ j ′ ∈ C i \ j r j ′ i ( 0 ) q_{ij}(0)=\left( 1-P_{i}\right) \prod_{j^{\prime }\in C_{i}\backslash j} r_{j^{\prime }i}(0) qij(0)=(1Pi)jCi\jrji(0)

q i j ( 1 ) = P i ∏ j ′ ∈ C i \ j r j ′ i ( 1 ) q_{ij}(1)=P_{i}\prod_{j^{\prime }\in C_{i}\backslash j} r_{j^{\prime }i}(1) qij(1)=PijCi\jrji(1)

lemma 2

在这里插入图片描述

p ( x i = x | y ) = p ( x i = x , y ) p ( y ) = p ( y | x i = x ) p ( x i = x ) p ( x i = 1 ) p ( y | x i = 1 ) + p ( x i = − 1 ) p ( y | x i = − 1 ) p\left( x_{i}=x\middle| y\right) =\frac{p\left( x_{i}=x,y\right) }{p\left( y\right) } =\frac{p\left( y\middle| x_{i}=x\right) p\left( x_{i}=x\right) }{p\left( x_{i}=1\right) p\left( y\middle| x_{i}=1\right) +p\left( x_{i}=-1\right) p\left( y\middle| x_{i}=-1\right) } p(xi=xy)=p(y)p(xi=x,y)=p(xi=1)p(yxi=1)+p(xi=1)p(yxi=1)p(yxi=x)p(xi=x)
代入已知条件可得:
p ( y | x i = x ) p ( y | x i = 1 ) + p ( y | x i = − 1 ) = 1 2 π σ e x p ( − ( y − x ) 2 2 σ 2 ) 1 2 π σ e x p ( − ( y − 1 ) 2 2 σ 2 ) + 1 2 π σ e x p ( − ( y + 1 ) 2 2 σ 2 ) = e x p ( x y σ 2 ) e x p ( y σ 2 ) + e x p ( − y σ 2 ) = 1 e x p ( y ( 1 − x ) σ 2 ) + e x p ( − y ( 1 + x ) σ 2 ) = 1 1 + e x p ( − 2 x y σ 2 ) \frac{p\left( y\middle| x_{i}=x\right) }{p\left( y\middle| x_{i}=1\right) +p\left( y\middle| x_{i}=-1\right) } =\frac{\frac{1}{\sqrt{2\pi } \sigma } exp\left( -\frac{\left( y-x\right)^{2} }{2\sigma^{2} } \right) }{\frac{1}{\sqrt{2\pi } \sigma } exp\left( -\frac{\left( y-1\right)^{2} }{2\sigma^{2} } \right) +\frac{1}{\sqrt{2\pi } \sigma } exp\left( -\frac{\left( y+1\right)^{2} }{2\sigma^{2} } \right) } \\ =\frac{exp\left( \frac{xy}{\sigma^{2} } \right) }{exp\left( \frac{y}{\sigma^{2} } \right) +exp\left( \frac{-y}{\sigma^{2} } \right) } =\frac{1}{exp\left( \frac{y\left( 1-x\right) }{\sigma^{2} } \right) +exp\left( -\frac{y\left( 1+x\right) }{\sigma^{2} } \right) } \\ =\frac{1}{1+exp\left( \frac{-2xy}{\sigma^{2} } \right) } p(yxi=1)+p(yxi=1)p(yxi=x)=2π σ1exp(2σ2(y1)2)+2π σ1exp(2σ2(y+1)2)2π σ1exp(2σ2(yx)2)=exp(σ2y)+exp(σ2y)exp(σ2xy)=exp(σ2y(1x))+exp(σ2y(1+x))1=1+exp(σ22xy)1

LLR formula proof

在这里插入图片描述

L ( q i j ) = L ( c i ) = log ⁡ ( 1 + e − 2 y i / σ 2 ) − 1 ( 1 + e 2 y i / σ 2 ) − 1 = log ⁡ e y σ 2 ( e y σ 2 + e − y σ 2 ) e − y σ 2 ( e y σ 2 + e − y σ 2 ) = log ⁡ e y σ 2 e − y σ 2 = 2 y σ 2 \begin{array}{l}L\left( q_{ij}\right) =L\left( c_{i}\right) =\log \frac{\left( 1+e^{-2y_{i}/\sigma^{2} }\right)^{-1} }{\left( 1+e^{2y_{i}/\sigma^{2} }\right)^{-1} } \\ =\log \frac{e^{\frac{y}{\sigma^{2} } }\left( e^{\frac{y}{\sigma^{2} } }+e^{\frac{-y}{\sigma^{2} } }\right) }{e^{\frac{-y}{\sigma^{2} } }\left( e^{\frac{y}{\sigma^{2} } }+e^{\frac{-y}{\sigma^{2} } }\right) } =\log \frac{e^{\frac{y}{\sigma^{2} } }}{e^{\frac{-y}{\sigma^{2} } }} =\frac{2y}{\sigma^{2} } \end{array} L(qij)=L(ci)=log(1+e2yi/σ2)1(1+e2yi/σ2)1=logeσ2y(eσ2y+eσ2y)eσ2y(eσ2y+eσ2y)=logeσ2yeσ2y=σ22y
证明以下公式:
在这里插入图片描述

将校验节点中的公式改写为
2 r j i ( 0 ) = 1 + ∏ i ′ ∈ V j \ i ( 1 − 2 q i ′ j ( 1 ) ) ⇒ 1 − 2 r j i ( 1 ) = ∏ i ′ ∈ V j \ i ( 1 − 2 q i ′ j ( 1 ) ) \begin{aligned} &2 r_{j i}(0)=1+\prod_{i^{\prime} \in V_{j} \backslash i}\left(1-2 q_{i^{\prime} j}(1)\right) \\ &\Rightarrow 1-2 r_{j i}(1)=\prod_{i^{\prime} \in V_{j} \backslash i}\left(1-2 q_{i^{\prime} j}(1)\right) \end{aligned} 2rji(0)=1+iVj\i(12qij(1))12rji(1)=iVj\i(12qij(1))
利用恒等公式 tanh ⁡ x = e x − e − x e x + e − x \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} tanhx=ex+exexex tanh ⁡ ( 1 2 log ⁡ ( p 0 p 1 ) ) = p 0 − p 1 = 1 − 2 p 1 \tanh \left( \frac{1}{2} \log \left( \frac{p_{0}}{p_{1}} \right) \right) =p_{0}-p_{1}=1-2p_{1} tanh(21log(p1p0))=p0p1=12p1可得

tanh ⁡ ( 1 2 L ( r j i ) ) = tanh ⁡ ( 1 2 log ⁡ ( r j i ( 0 ) r j i ( 1 ) ) ) = 1 − 2 r j i ( 1 ) = ∏ i ′ ∈ V j \ i ( 1 − 2 q i ′ j ( 1 ) ) = ∏ i ′ ∈ V j \ i tanh ⁡ ( 1 2 L ( q i ′ j ) ) \begin{array}{l}\tanh \left( \frac{1}{2} L\left( r_{ji}\right) \right) =\tanh \left( \frac{1}{2} \log \left( \frac{r_{ji}\left( 0\right) }{r_{ji}\left( 1\right) } \right) \right) \\ =1-2r_{ji}\left( 1\right) =\prod_{i^{\prime }\in V_{j}\backslash i} \left( 1-2q_{i^{\prime }j}(1)\right) \\ =\prod_{i^{\prime }\in V_{j}\backslash i} \tanh \left( \frac{1}{2} L\left( q_{i^{\prime }j}\right) \right) \end{array} tanh(21L(rji))=tanh(21log(rji(1)rji(0)))=12rji(1)=iVj\i(12qij(1))=iVj\itanh(21L(qij))
得证

tanh ⁡ ( 1 2 L ( r j i ) ) = ∏ i ′ ∈ V j \ i tanh ⁡ ( 1 2 L ( q i ′ j ) ) \tanh \left(\frac{1}{2} L\left(r_{j i}\right)\right)=\prod_{i^{\prime} \in V_{j} \backslash i} \tanh \left(\frac{1}{2} L\left(q_{i^{\prime} j}\right)\right) tanh(21L(rji))=iVj\itanh(21L(qij))

同时可以得到
L ( r j i ) = 2 tanh ⁡ − 1 ( ∏ i ′ ∈ V j \ i tanh ⁡ ( 1 2 L ( q i ′ j ) ) ) L\left(r_{j i}\right)=2 \tanh ^{-1}\left(\prod_{i^{\prime} \in V_{j} \backslash i} \tanh \left(\frac{1}{2} L\left(q_{i^{\prime} j}\right)\right)\right) L(rji)=2tanh1iVj\itanh(21L(qij))

ϕ \phi ϕ函数

我们可以 L ( q i ′ j ) = α i j β i j L\left( q_{i^{\prime }j}\right) =\alpha_{ij} \beta_{ij} L(qij)=αijβij来表示,其中
a i j ≡ s i g n ( L ( q i j ) ) β i j ≡ ∣ L ( q i j ) ∣ \begin{array}{l}a_{ij}\equiv sign\left( L\left( q_{ij}\right) \right) \\ \beta_{ij} \equiv \left| L\left( q_{ij}\right) \right| \end{array} aijsign(L(qij))βijL(qij)
上式等于
tanh ⁡ ( 1 2 L ( r i j ) ) = ∏ i ′ α i j ⋅ ∏ i ′ tanh ⁡ ( 1 2 β i ′ j ) \tanh \left(\frac{1}{2} L\left(r_{i j}\right)\right)=\prod_{i^{\prime}} \alpha_{i j} \cdot \prod_{i^{\prime}} \tanh \left(\frac{1}{2} \beta_{i^{\prime} j}\right) tanh(21L(rij))=iαijitanh(21βij)
我们可以得到:
L ( r j i ) = ( ∏ i ′ a i j ) × 2 tanh ⁡ − 1 log ⁡ − 1 log ⁡ ⏞ ∏ i ′ tanh ⁡ ( 1 2 β i ′ j ) = ( ∏ i ′ a i j ) × 2 tanh ⁡ − 1 log ⁡ − 1 ∑ i ′ log ⁡ tanh ⁡ ( 1 2 β i ′ j ) = ( ∏ i ′ α i j ) ϕ ( ∑ i ′ ∈ R j / i ϕ ( β i ′ j ) ) \begin{aligned}\begin{array}{ll}L\left( r_{ji}\right) &=\left( \prod_{i^{\prime }} a_{ij}\right) \times 2\tanh^{-1} \overbrace{\log^{-1} \log } \prod_{i^{\prime }} \tanh \left( \frac{1}{2} \beta_{i^{\prime }j} \right) \\ &=\left( \prod_{i^{\prime }} a_{ij}\right) \times 2\tanh^{-1} \log^{-1} \sum_{i^{\prime }} \log \tanh \left( \frac{1}{2} \beta_{i^{\prime }j} \right) \\ &=\left( \prod_{i^{\prime }} \alpha_{ij} \right) \phi \left( \sum_{i^{\prime }\in R_{j/i}} \phi \left( \beta_{i^{\prime }j} \right) \right) \end{array} \end{aligned} L(rji)=(iaij)×2tanh1log1log itanh(21βij)=(iaij)×2tanh1log1ilogtanh(21βij)=(iαij)ϕ(iRj/iϕ(βij))
其中 ϕ ( x ) ≡ − log ⁡ tanh ⁡ ( 1 2 x ) = log ⁡ e x + 1 e x − 1 \phi \left( x\right) \equiv -\log \tanh \left( \frac{1}{2} x\right) =\log \frac{e^{x}+1}{e^{x}-1} ϕ(x)logtanh(21x)=logex1ex+1

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值