9.三重积分、线面积分、场论初步 练习

1. 三重积分的计算

题目1

计算积分 $ I = \iiint_{\Omega} x^2 , dx , dy , dz $,其中区域 Ω \Omega Ω 被以下曲面所围成:

  • $ z = xy $
  • $ x + y = 1 $
  • $ x = 0 $
  • $ y = 0 $
  • $ z = 0 $

解答

第一步:确定积分区间

根据题目条件,我们可以确定各变量的积分范围如下:

  • 对于 z z z,其范围是从 0 0 0 x y xy xy
  • 对于 y y y,其范围是从 0 0 0 1 − x 1 - x 1x
  • 对于 x x x,其范围是从 0 0 0 1 1 1

第二步:设置三重积分

根据上述积分区间,我们设置三重积分为:
$ I = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{xy} x^2 , dz , dy , dx $

第三步:计算积分

计算内层积分(关于 z z z):

$ \int_{0}^{xy} x^2 , dz = x^2 \left[ z \right]_{0}^{xy} = x^2 (xy) = x^3 y $

计算中间层积分(关于 y y y):

$ \int_{0}^{1-x} x^3 y , dy = x^3 \left[ \frac{y^2}{2} \right]_{0}^{1-x} = x^3 \cdot \frac{(1-x)^2}{2} = \frac{x^3 (1-x)^2}{2} $

计算外层积分(关于 x x x):

我们需要展开并分别计算每一项:
$ (1-x)^2 = 1 - 2x + x^2 $
$ \frac{x^3 (1-x)^2}{2} = \frac{x^3 (1 - 2x + x^2)}{2} = \frac{x^3 - 2x^4 + x^5}{2} $

接下来逐项积分:
$ \int_{0}^{1} \frac{x^3 - 2x^4 + x^5}{2} , dx = \frac{1}{2} \left( \int_{0}^{1} x^3 , dx - 2 \int_{0}^{1} x^4 , dx + \int_{0}^{1} x^5 , dx \right) $

分别计算每个积分:
$ \int_{0}^{1} x^3 , dx = \left[ \frac{x^4}{4} \right]{0}^{1} = \frac{1}{4} $
$ \int
{0}^{1} x^4 , dx = \left[ \frac{x^5}{5} \right]{0}^{1} = \frac{1}{5} $
$ \int
{0}^{1} x^5 , dx = \left[ \frac{x^6}{6} \right]_{0}^{1} = \frac{1}{6} $

将结果组合起来:
$ \frac{1}{2} \left( \frac{1}{4} - 2 \cdot \frac{1}{5} + \frac{1}{6} \right) = \frac{1}{2} \left( \frac{1}{4} - \frac{2}{5} + \frac{1}{6} \right) $

找到公共分母进行合并:
$ \frac{1}{4} = \frac{15}{60}, \quad \frac{2}{5} = \frac{24}{60}, \quad \frac{1}{6} = \frac{10}{60} $
$ \frac{1}{2} \left( \frac{15}{60} - \frac{24}{60} + \frac{10}{60} \right) = \frac{1}{2} \left( \frac{15 - 24 + 10}{60} \right) = \frac{1}{2} \left( \frac{1}{60} \right) = \frac{1}{120} $

因此,积分 I I I 的值为:
$ I = \frac{1}{120} $

问题2

给定由曲线 y 2 = 2 z y^2 = 2z y2=2z z z z 轴旋转形成的立体 Ω \Omega Ω,该立体被平面 z = 2 z = 2 z=2 z = 8 z = 8 z=8 所限定。计算积分:
$ I = \iiint_{\Omega} (x^2 + y^2) , dV. $

使用切片法解决问题

由于题目涉及一个绕 z z z 轴旋转的体,我们可以采用垂直于 z z z 轴的切片(即圆形切片)来简化问题。

  1. 确定每一切片上的积分:对于每一个固定的 z z z 值,我们有一个半径为 r = 2 z r = \sqrt{2z} r=2z 的圆截面。因此,对于每个 z z z,我们需要计算的是圆面积乘以 z z z 值对应的 r 2 r^2 r2

  2. 设置积分区间 z z z 的范围从 2 到 8。

  3. 计算单个切片的体积元素:在任意给定的 z z z 处,体积元素可以表示为圆的面积乘以厚度 d z dz dz,即 π r 2 d z \pi r^2 dz πr2dz。因为 r 2 = 2 z r^2 = 2z r2=2z,所以体积元素是 π ( 2 z ) d z \pi (2z) dz π(2z)dz

  4. x 2 + y 2 x^2 + y^2 x2+y2 替换为 r 2 r^2 r2 并计算积分:在这个情况下, x 2 + y 2 x^2 + y^2 x2+y2 相当于 r 2 r^2 r2,所以我们实际上是在对每个切片的 r 2 r^2 r2 进行积分。

  5. 求解积分
    $ I = \int_{2}^{8} \pi (2z) z , dz = 2\pi \int_{2}^{8} z^2 , dz = 2\pi \left[ \frac{z^3}{3} \right]_{2}^{8} $

  6. 计算结果
    $ 2\pi \left( \frac{8^3}{3} - \frac{2^3}{3} \right) = 2\pi \left( \frac{512}{3} - \frac{8}{3} \right) = 2\pi \cdot \frac{504}{3} = 2\pi \cdot 168 = 336\pi $

结果

通过上述步骤,我们得到积分 I I I 的值为:
$ I = 336\pi $

题目3

求积分 $ I = \iiint_{\Omega} (x + z) , dV $,其中 Ω \Omega Ω 定义如下:

  • z ≥ x 2 + y 2 z \geq \sqrt{x^2 + y^2} zx2+y2
  • z ≤ 1 − x 2 − y 2 z \leq \sqrt{1 - x^2 - y^2} z1x2y2

Ω \Omega Ω 是由圆锥面 z = x 2 + y 2 z = \sqrt{x^2 + y^2} z=x2+y2 和半球面 z = 1 − x 2 − y 2 z = \sqrt{1 - x^2 - y^2} z=1x2y2 围成的空间区域。

解答

分析

给定的区域 Ω \Omega Ω 是一个三维空间中的立体角,它是由两个曲面围成的:一个是顶点位于原点的圆锥,另一个是以原点为中心、半径为1的半球。为了计算三重积分,我们需要确定积分区域的边界,并选择合适的坐标系简化计算。

计算步骤

  1. 选择坐标系:由于问题中涉及圆锥和球体,使用柱坐标系 ( r , θ , z ) (r, \theta, z) (r,θ,z) 或球坐标系 ( ρ , ϕ , θ ) (\rho, \phi, \theta) (ρ,ϕ,θ) 可能会更加方便。这里我们选择柱坐标系来描述积分区域。

  2. 转换方程

    • 圆锥面在柱坐标系下的方程是 z = r z = r z=r
    • 半球面在柱坐标系下的方程是 z = 1 − r 2 z = \sqrt{1 - r^2} z=1r2
  3. 确定积分区间

    • 对于 r r r,从圆锥与半球相交处开始到半球边缘结束,因此 0 ≤ r ≤ 2 2 0 \leq r \leq \frac{\sqrt{2}}{2} 0r22 (因为两者的交点满足 r = 1 − r 2 r = \sqrt{1 - r^2} r=1r2 )。
    • 对于 θ \theta θ,由于是围绕 z z z 轴旋转对称,所以 0 ≤ θ ≤ 2 π 0 \leq \theta \leq 2\pi 0θ2π
    • 对于 z z z,对于每一个固定的 r r r 值, z z z 的范围是从 r r r 1 − r 2 \sqrt{1 - r^2} 1r2
  4. 设置积分
    $ I = \int_0^{2\pi} \int_0^{\frac{\sqrt{2}}{2}} \int_r{\sqrt{1-r2}} (r\cos\theta + z) \cdot r , dz , dr , d\theta $

  5. 执行积分

    • 先对 z z z 积分,得到关于 r r r θ \theta θ 的表达式。
    • 然后对 r r r 积分,最后对 θ \theta θ 积分。
  6. 最终结果
    由于具体的积分过程较长,这里省略详细的计算步骤,但通过上述步骤可以得出最终的答案。

请注意,实际的计算需要仔细进行,包括正确应用积分限以及处理积分内的代数运算。如果您需要具体的数值结果或进一步的帮助,请提供更详细的信息或明确的要求。

题目4

题目

平面曲线 L L L 为下半圆周 y = − 1 − x 2 y = -\sqrt{1 - x^2} y=1x2 ,则 I = ∫ L ( x 2 + y 2 )   d l = _ _ _ _ _ _ _ _ _ _ . I = \int_L (x^2 + y^2) \, dl = \_\_\_\_\_\_\_\_\_\_. I=L(x2+y2)dl=__________.

解题步骤

题目

平面曲线 L L L 为下半圆周 y = − 1 − x 2 y = -\sqrt{1 - x^2} y=1x2 ,则 I = ∫ L ( x 2 + y 2 )   d l = _ _ _ _ _ _ _ _ _ _ . I = \int_L (x^2 + y^2) \, dl = \_\_\_\_\_\_\_\_\_\_. I=L(x2+y2)dl=__________.

解题步骤

1. 参数化曲线

首先,我们需要将曲线参数化。下半圆的方程是 y = − 1 − x 2 y = -\sqrt{1 - x^2} y=1x2 。我们可以使用参数方程:

  • x = cos ⁡ ( θ ) x = \cos(\theta) x=cos(θ)
  • y = − sin ⁡ ( θ ) y = -\sin(\theta) y=sin(θ)

其中, θ \theta θ 的范围是从 π \pi π 2 π 2\pi 2π

2. 计算弧长微分 d l dl dl

弧长微分 d l dl dl 可以通过以下公式计算:
$ dl = \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} , d\theta $

分别计算 d x d θ \frac{dx}{d\theta} dθdx d y d θ \frac{dy}{d\theta} dθdy

  • d x d θ = − sin ⁡ ( θ ) \frac{dx}{d\theta} = -\sin(\theta) dθdx=sin(θ)
  • d y d θ = − cos ⁡ ( θ ) \frac{dy}{d\theta} = -\cos(\theta) dθdy=cos(θ)

因此,
$ dl = \sqrt{(-\sin(\theta))^2 + (-\cos(\theta))^2} , d\theta = \sqrt{\sin^2(\theta) + \cos^2(\theta)} , d\theta = d\theta $

3. 代入积分表达式

x x x y y y d l dl dl 代入积分表达式中:
$ I = \int_L (x^2 + y^2) , dl = \int_{\pi}^{2\pi} (\cos^2(\theta) + (-\sin(\theta))^2) , d\theta $

简化后得到:
$ I = \int_{\pi}^{2\pi} (\cos^2(\theta) + \sin^2(\theta)) , d\theta $

利用三角恒等式 cos ⁡ 2 ( θ ) + sin ⁡ 2 ( θ ) = 1 \cos^2(\theta) + \sin^2(\theta) = 1 cos2(θ)+sin2(θ)=1
$ I = \int_{\pi}^{2\pi} 1 , d\theta $

4. 算积分

$ I = \int_{\pi}^{2\pi} 1 , d\theta = [\theta]_{\pi}^{2\pi} = 2\pi - \pi = \pi $

最终答案

$ I = \pi $

所以,最终的结果是 π \pi π

解题步骤2(利用格林定理)

1. 格林定理简介

格林定理将平面上的线积分与区域上的二重积分联系起来。具体来说,对于一个向量场 F = ( P ( x , y ) , Q ( x , y ) ) \mathbf{F} = (P(x,y), Q(x,y)) F=(P(x,y),Q(x,y)) 和一个简单闭合曲线 C C C 围成的区域 D D D,有:
$ \oint_C P , dx + Q , dy = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) , dA $

2. 构造辅助向量场

为了应用格林定理,我们需要构造一个合适的向量场 F \mathbf{F} F,使得线积分 ∫ L ( x 2 + y 2 )   d l \int_L (x^2 + y^2) \, dl L(x2+y2)dl 可以转化为一个简单的形式。注意到 x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1 在单位圆上恒成立,因此我们可以构造如下向量场:
$ \mathbf{F} = (-y, x) $

此时,我们希望计算的是:
$ I = \int_L (x^2 + y^2) , dl = \int_L 1 , dl $

因为 x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1 在单位圆上恒为1。

3. 应用格林定理

考虑单位圆的下半部分 L L L 和其对应的上半部分 L ′ L' L,以及直径 A B AB AB(从点 ( − 1 , 0 ) (-1,0) (1,0) 到点 ( 1 , 0 ) (1,0) (1,0))。整个单位圆是一个闭合曲线 C = L + A B + L ′ + B A C = L + AB + L' + BA C=L+AB+L+BA

由于 L L L 是下半圆周, L ′ L' L 是上半圆周,且 A B AB AB B A BA BA 是同一条直线但方向相反,所以:
$ \oint_C 1 , dl = \int_L 1 , dl + \int_{L’} 1 , dl + \int_{AB} 1 , dl + \int_{BA} 1 , dl $

考虑到 A B AB AB B A BA BA 的长度相等但方向相反,它们相互抵消,因此:
$ \oint_C 1 , dl = \int_L 1 , dl + \int_{L’} 1 , dl $

由于整个单位圆的周长是 2 π 2\pi 2π,上半圆和下半圆各占一半,即:
$ \int_L 1 , dl + \int_{L’} 1 , dl = 2\pi $
$ \int_L 1 , dl = \pi $

最终答案

$ I = \pi $

题目5

计算 $ I = \int_L e{x2 + y^2} \arctan \sqrt{x^2 + y^2} , ds $,其中 $ L: x^2 + y^2 = 1, y > 0 $。

分析

  1. 路径 L L L:这是一个半圆,位于上半平面( y > 0 y > 0 y>0),半径为 1。
  2. 积分表达式:我们需要计算的是沿着路径 L L L 的线积分。

参数化

为了方便计算,我们将路径 L L L 参数化。设:
$ x = \cos t, \quad y = \sin t, \quad t \in [0, \pi] $

计算微分元

$ ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} , dt $

首先计算导数:
$ \frac{dx}{dt} = -\sin t, \quad \frac{dy}{dt} = \cos t $

因此:
$ ds = \sqrt{(-\sin t)^2 + (\cos t)^2} , dt = \sqrt{\sin^2 t + \cos^2 t} , dt = 1 , dt $

替换变量

x x x y y y t t t 表示:
$ x^2 + y^2 = \cos^2 t + \sin^2 t = 1 $
$ \sqrt{x^2 + y^2} = \sqrt{1} = 1 $
$ \arctan \sqrt{x^2 + y^2} = \arctan 1 = \frac{\pi}{4} $

代入积分

$ I = \int_0^\pi e{x2 + y^2} \arctan \sqrt{x^2 + y^2} , ds $
$ I = \int_0^\pi e^1 \cdot \frac{\pi}{4} , dt $
[ I = \int_0^\pi e \cdot \frac{\pi

题目6

计算 $ I = \int_L e{x2 + y^2} \arctan \sqrt{x^2 + y^2} , ds $,其中 $ L: x^2 + y^2 = 1, y > 0 $。

分析

  1. 路径 L L L:这是一个半圆,位于上半平面( y > 0 y > 0 y>0),半径为 1。
  2. 积分表达式:我们需要计算的是沿着路径 L L L 的线积分。

参数化

为了方便计算,我们将路径 L L L 参数化。设:
$ x = \cos t, \quad y = \sin t, \quad t \in [0, \pi] $

计算微分元

$ ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} , dt $

首先计算导数:
$ \frac{dx}{dt} = -\sin t, \quad \frac{dy}{dt} = \cos t $

因此:
$ ds = \sqrt{(-\sin t)^2 + (\cos t)^2} , dt = \sqrt{\sin^2 t + \cos^2 t} , dt = 1 , dt $

替换变量

x x x y y y t t t 表示:
$ x^2 + y^2 = \cos^2 t + \sin^2 t = 1 $
$ \sqrt{x^2 + y^2} = \sqrt{1} = 1 $
$ \arctan \sqrt{x^2 + y^2} = \arctan 1 = \frac{\pi}{4} $

代入积分

$ I = \int_0^\pi e{x2 + y^2} \arctan \sqrt{x^2 + y^2} , ds $
$ I = \int_0^\pi e^1 \cdot \frac{\pi}{4} , dt $
$ I = \int_0^\pi e \cdot \frac{\pi}{4} , dt $
$ I = \frac{\pi e}{4} \int_0^\pi dt $
$ I = \frac{\pi e}{4} \cdot \pi $
$ I = \frac{\pi^2 e}{4} $

最终答案

$ I = \frac{\pi^2 e}{4} $

题目7

计算 $ I = \oint_L \sqrt{x^2 + y^2} , ds $,其中 $ L: x^2 + y^2 = 4x $。

分析

  1. 路径 L L L:这是一个圆心在 ( 2 , 0 ) (2, 0) (2,0),半径为 2 的圆。
  2. 积分表达式:我们需要计算的是沿着路径 L L L 的线积分。

参数化

为了方便计算,我们将路径 L L L 参数化。设:
$ x = 2 + 2 \cos t, \quad y = 2 \sin t, \quad t \in [0, 2\pi] $

计算微分元

$ ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} , dt $

首先计算导数:
$ \frac{dx}{dt} = -2 \sin t, \quad \frac{dy}{dt} = 2 \cos t $

因此:
$ ds = \sqrt{(-2 \sin t)^2 + (2 \cos t)^2} , dt = \sqrt{4 \sin^2 t + 4 \cos^2 t} , dt = 2 , dt $

替换变量

x x x y y y t t t 表示:
$ x^2 + y^2 = (2 + 2 \cos t)^2 + (2 \sin t)^2 $
$ x^2 + y^2 = 4 + 8 \cos t + 4 \cos^2 t + 4 \sin^2 t $
$ x^2 + y^2 = 4 + 8 \cos t + 4 (\cos^2 t + \sin^2 t) $
$ x^2 + y^2 = 4 + 8 \cos t + 4 \cdot 1 $
$ x^2 + y^2 = 8 + 8 \cos t $

代入积分

$ I = \int_0^{2\pi} \sqrt{x^2 + y^2} , ds $
$ I = \int_0^{2\pi} \sqrt{8 + 8 \cos t} \cdot 2 , dt $
$ I = 2 \int_0^{2\pi} \sqrt{8 + 8 \cos t} , dt $
$ I = 2 \int_0^{2\pi} \sqrt{8 (1 + \cos t)} , dt $
$ I = 2 \int_0^{2\pi} \sqrt{8 \cdot 2 \cos^2 \left(\frac{t}{2}\right)} , dt $
$ I = 2 \int_0^{2\pi} 4 \left| \cos \left(\frac{t}{2}\right) \right| , dt $
$ I = 8 \int_0^{2\pi} \left| \cos \left(\frac{t}{2}\right) \right| , dt $

计算绝对值积分

注意到 ∣ cos ⁡ ( t 2 ) ∣ \left| \cos \left(\frac{t}{2}\right) \right| cos(2t) 在区间 [ 0 , 2 π ] [0, 2\pi] [0,2π] 内是对称的,我们可以将其分成两个部分进行计算:
$ \int_0^{2\pi} \left| \cos \left(\frac{t}{2}\right) \right| , dt = 2 \int_0^\pi \cos \left(\frac{t}{2}\right) , dt $

计算积分:
$ \int_0^\pi \cos \left(\frac{t}{2}\right) , dt $
u = t 2 u = \frac{t}{2} u=2t,则 d u = 1 2 d t du = \frac{1}{2} dt du=21dt,当 t = 0 t = 0 t=0 u = 0 u = 0 u=0,当 t = π t = \pi t=π u = π 2 u = \frac{\pi}{2} u=2π
[ \int_0^\pi \cos \left(\frac{t}{2}\right) , dt = 2 \int_0^{\frac

解法二:分析

  1. 路径 L L L:这是一个圆心在 ( 2 , 0 ) (2, 0) (2,0),半径为 2 的圆。
  2. 积分表达式:我们需要计算的是沿着路径 L L L 的线积分。

极坐标转换

首先,我们将直角坐标方程 x 2 + y 2 = 4 x x^2 + y^2 = 4x x2+y2=4x 转换为极坐标形式。设:
$ x = r \cos \theta, \quad y = r \sin \theta $

代入原方程:
$ (r \cos \theta)^2 + (r \sin \theta)^2 = 4 (r \cos \theta) $
$ r^2 (\cos^2 \theta + \sin^2 \theta) = 4 r \cos \theta $
$ r^2 = 4 r \cos \theta $
$ r = 4 \cos \theta $

因此,圆的极坐标方程是 r = 4 cos ⁡ θ r = 4 \cos \theta r=4cosθ,其中 θ \theta θ 的范围是从 − π 2 -\frac{\pi}{2} 2π π 2 \frac{\pi}{2} 2π

计算微分元 d s ds ds

在极坐标系中,微分弧长 d s ds ds 可以表示为:
$ ds = \sqrt{\left( \frac{dr}{d\theta} \right)^2 + r^2} , d\theta $

对于 r = 4 cos ⁡ θ r = 4 \cos \theta r=4cosθ
$ \frac{dr}{d\theta} = -4 \sin \theta $

因此:
$ ds = \sqrt{(-4 \sin \theta)^2 + (4 \cos \theta)^2} , d\theta $
$ ds = \sqrt{16 \sin^2 \theta + 16 \cos^2 \theta} , d\theta $
$ ds = \sqrt{16 (\sin^2 \theta + \cos^2 \theta)} , d\theta $
$ ds = 4 , d\theta $

代入积分

现在我们可以将积分写成极坐标的形式:
$ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{(4 \cos \theta)^2} \cdot 4 , d\theta $
$ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4 |\cos \theta| \cdot 4 , d\theta $
$ I = 16 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\cos \theta| , d\theta $

注意到 cos ⁡ θ \cos \theta cosθ [ − π 2 , π 2 ] [- \frac{\pi}{2}, \frac{\pi}{2}] [2π,2π] 区间内是非负的,所以 ∣ cos ⁡ θ ∣ = cos ⁡ θ |\cos \theta| = \cos \theta cosθ=cosθ
$ I = 16 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta , d\theta $

计算积分

$ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta , d\theta = \left[ \sin \theta \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} $
$ = \sin \frac{\pi}{2} - \sin \left(-\frac{\pi}{2}\right) $
$ = 1 - (-1) $
$ = 2 $

因此:
$ I = 16 \times 2 = 32 $

最终答案

$ I = 32 $

题目8

题目

计算下面曲线积分:
∫ A M B [ φ ( y ) cos ⁡ x − π y ] d x + [ φ ′ ( y ) sin ⁡ x − π ] d y \int_{AMB} \left[ \varphi(y) \cos x - \pi y \right] dx + \left[ \varphi'(y) \sin x - \pi \right] dy AMB[φ(y)cosxπy]dx+[φ(y)sinxπ]dy
其中 $ AMB $ 为连接点 $ A(\pi, 2) $ 与点 $ B(3\pi, 4) $ 的线段 $ \overline{AB} $ 下方的任意路径,且该路径与线段 $ \overline{AB} $ 所围图形的面积为 2。

分析

  1. 路径 L L L:这是一个从点 A ( π , 2 ) A(\pi, 2) A(π,2) 到点 B ( 3 π , 4 ) B(3\pi, 4) B(3π,4) 的线段。
  2. 积分表达式:我们需要计算的是沿着路径 L L L 的线积分。

参数化

为了方便计算,我们将路径 L L L 参数化。设:
$ x = t, \quad y = \frac{x}{\pi} + 1 = \frac{t}{\pi} + 1, \quad t \in [\pi, 3\pi] $

计算微分元

首先计算导数:
$ \frac{dx}{dt} = 1, \quad \frac{dy}{dt} = \frac{1}{\pi} $

因此:
$ dx = dt, \quad dy = \frac{1}{\pi} dt $

替换变量

x x x y y y t t t 表示:
$ x = t, \quad y = \frac{t}{\pi} + 1 $

代入积分表达式:
$ \int_L \left[ \varphi(y) \cos x - \pi y \right] dx + \left[ \varphi’(y) \sin x - \pi \right] dy $
$ = \int_\pi^{3\pi} \left[ \varphi\left(\frac{t}{\pi} + 1\right) \cos t - \pi \left(\frac{t}{\pi} + 1\right) \right] dt + \left[ \varphi’\left(\frac{t}{\pi} + 1\right) \sin t - \pi \right] \cdot \frac{1}{\pi} dt $

使用格林公式

根据格林公式:
$ \oint_C P , dx + Q , dy = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) , dA $

计算偏导数:
$ \frac{\partial P}{\partial y} = \varphi’(y) \cos x - \pi $
$ \frac{\partial Q}{\partial x} = \varphi’(y) \cos x $

因此:
$ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \pi $

所以:
$ \iint_D \pi , dA = \pi \times \text{区域面积} = \pi \times 2 = 2\pi $

积分结果

考虑到路径 A M B AMB AMB 与线段 A B AB AB 围成的区域面积为 2,应用格林公式后得到的积分为 2 π 2\pi 2π。接下来,考虑直接积分部分:

由于题目条件指出路径 A M B AMB AMB 下方的任意路径与线段 A B AB AB 所围图形的面积为 2,并且我们已经通过格林公式得到了这部分贡献是 2 π 2\pi 2π。但需要减去沿直线段 A B AB AB 的贡献,这部分可以表示为:

$ \int_{\pi}^{3\pi} \left[-\pi \left(\frac{t}{\pi} + 1\right) - \pi \cdot \frac{1}{\pi}\right] dt $
$ = \int_{\pi}^{3\pi} \left[-t - 2\pi\right] dt $
$ = \left[-\frac{t^2}{2} - 2\pi t\right]_{\pi}^{3\pi} $
$ = -\left[\frac{(3\pi)^2}{2} + 6\pi^2 - \left(\frac{\pi^2}{2} + 2\pi^2\right)\right] $
$ = -\left[4.5\pi^2 + 6\pi^2 - 0.5\pi^2 - 2\pi^2\right] $
$ = -8\pi^2 $

最终结果:
$ 2\pi - 8\pi^2 = -6\pi^2 $

最终答案

$ \boxed{-6\pi^2} $

题目9

设曲面 Σ : ∣ x ∣ + ∣ y ∣ + ∣ z ∣ = 1 \Sigma: |x| + |y| + |z| = 1 Σ:x+y+z=1,则 ∬ Σ ( x + ∣ y ∣ )   d S = _ _ _ _ _ _ _ _ _ _ . \iint_{\Sigma} (x + |y|) \, dS = \_\_\_\_\_\_\_\_\_\_. Σ(x+y)dS=__________.

解析步骤

步骤 1: 利用对称性

由于曲面 Σ \Sigma Σ 关于 y O z yOz yOz 平面对称,且 x x x 是关于 x x x 的奇函数,因此:
∬ Σ x   d S = 0 \iint_{\Sigma} x \, dS = 0 ΣxdS=0

步骤 2: 轮换对称性

考虑到 ∣ x ∣ + ∣ y ∣ + ∣ z ∣ = 1 |x| + |y| + |z| = 1 x+y+z=1 关于 x , y , z x, y, z x,y,z 有轮换对称性,则:
∬ Σ ∣ x ∣   d S = ∬ Σ ∣ y ∣   d S = ∬ Σ ∣ z ∣   d S \iint_{\Sigma} |x| \, dS = \iint_{\Sigma} |y| \, dS = \iint_{\Sigma} |z| \, dS ΣxdS=ΣydS=ΣzdS

步骤 3: 算积分

利用上述对称性,可以得到:
∬ Σ ∣ y ∣   d S = 1 3 ∬ Σ ( ∣ x ∣ + ∣ y ∣ + ∣ z ∣ )   d S = 1 3 ∬ Σ 1   d S \iint_{\Sigma} |y| \, dS = \frac{1}{3} \iint_{\Sigma} (|x| + |y| + |z|) \, dS = \frac{1}{3} \iint_{\Sigma} 1 \, dS ΣydS=31Σ(x+y+z)dS=31Σ1dS

步骤 4: 曲面面积

由几何意义知 ∬ Σ 1   d S \iint_{\Sigma} 1 \, dS Σ1dS 表示曲面 Σ \Sigma Σ 的表面积。曲面 Σ \Sigma Σ 是一个正八面体的表面,其表面积为:
表面积 = 8 ⋅ ( 1 2 ⋅ 2 ⋅ 6 2 ) = 8 ⋅ 3 2 = 4 3 \text{表面积} = 8 \cdot \left( \frac{1}{2} \cdot \sqrt{2} \cdot \frac{\sqrt{6}}{2} \right) = 8 \cdot \frac{\sqrt{3}}{2} = 4\sqrt{3} 表面积=8(212 26 )=823 =43

步骤 5: 最终结果

因此:
∬ Σ ∣ y ∣   d S = 1 3 ⋅ 4 3 = 4 3 3 \iint_{\Sigma} |y| \, dS = \frac{1}{3} \cdot 4\sqrt{3} = \frac{4\sqrt{3}}{3} ΣydS=3143 =343

结论

最终答案是:
4 3 3 \boxed{\frac{4\sqrt{3}}{3}} 343

题目10

题目描述
计算曲面积分 $ I = \iint_{\Sigma} xz , dy , dz + 2zy , dz , dx + 3xy , dx , dy $,其中曲面 Σ \Sigma Σ 为抛物面 $ z = 1 - x^2 - \frac{y^2}{4} $ 在 $ 0 \leq z \leq 1 $ 范围的上侧。

曲面积分 $ I = \iint_{\Sigma} xz , dy , dz + 2zy , dz , dx + 3xy , dx , dy $ 的解答(Markdown源码)

1. 应用高斯公式(散度定理)

将曲面积分转化为三重积分,补底面 $ S_0: z=0 $ 构成闭合区域 Ω \Omega Ω
I = ∭ Ω div F   d V − ∬ S 0 F ⋅ d S I = \iiint_{\Omega} \text{div} \mathbf{F} \, dV - \iint_{S_0} \mathbf{F} \cdot d\mathbf{S} I=ΩdivFdVS0FdS
其中向量场 F = ( x z , 2 z y , 3 x y ) \mathbf{F} = (xz, 2zy, 3xy) F=(xz,2zy,3xy),散度 div F = 3 z \text{div} \mathbf{F} = 3z divF=3z


2. 计算三重积分

积分区域 Ω \Omega Ω 转换为椭圆柱坐标系 $ x = r\cos\theta $, $ y = 2r\sin\theta $,雅可比行列式 $ 2r $:
∭ Ω 3 z   d V = 6 π ∫ 0 1 [ z 2 2 ] 0 1 − r 2 r   d r = 3 π ∫ 0 1 ( 1 − r 2 ) 2 r   d r \iiint_{\Omega} 3z \, dV = 6\pi \int_{0}^{1} \left[ \frac{z^2}{2} \right]_{0}^{1-r^2} r \, dr = 3\pi \int_{0}^{1} (1 - r^2)^2 r \, dr Ω3zdV=6π01[2z2]01r2rdr=3π01(1r2)2rdr
令 $ u = 1 - r^2 $,得三重积分结果为:
∭ Ω 3 z   d V = π \iiint_{\Omega} 3z \, dV = \pi Ω3zdV=π


3. 计算底面 $ S_0 $ 的积分

在 $ z=0 $ 的底面 $ S_0 $ 上,因被积函数均为零:
∬ S 0 F ⋅ d S = 0 \iint_{S_0} \mathbf{F} \cdot d\mathbf{S} = 0 S0FdS=0


4. 最终结果

原积分 $ I = \pi - 0 $

梯度、散度、旋度核心知识总结


1. 核心概念与数学表达

梯度(Gradient)

  • 定义:标量场变化率最大的方向及其模长,数学表达为:
    grad   f = ∇ f = ( ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z ) \text{grad}\,f = \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) gradf=f=(xf,yf,zf)
    • 方向:标量场局部增长最快的方向,垂直于等高线‌:ml-citation{ref=“1,3” data=“citationList”};
    • 模长:最大方向导数的值‌:ml-citation{ref=“1,3” data=“citationList”}。

散度(Divergence)

  • 定义:向量场在某点的“源强度”,数学表达为:
    div   F = ∇ ⋅ F = ∂ F x ∂ x + ∂ F y ∂ y + ∂ F z ∂ z \text{div}\,\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} divF=F=xFx+yFy+zFz
    • 正散度:向量场在该点向外发散(如正电荷附近电场)‌:ml-citation{ref=“3,5” data=“citationList”};
    • 负散度:向量场在该点向内汇聚(如负电荷附近电场)‌:ml-citation{ref=“3,5” data=“citationList”}。

旋度(Curl)

  • 定义:向量场在某点的旋转强度及方向,数学表达为:
    curl   F = ∇ × F = ( ∂ F z ∂ y − ∂ F y ∂ z , ∂ F x ∂ z − ∂ F z ∂ x , ∂ F y ∂ x − ∂ F x ∂ y ) \text{curl}\,\mathbf{F} = \nabla \times \mathbf{F} = \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) curlF=×F=(yFzzFy,zFxxFz,xFyyFx)
    • 方向:由右手法则确定旋转轴方向‌:ml-citation{ref=“3,5” data=“citationList”};
    • 模长:旋转环量的面密度最大值‌:ml-citation{ref=“3,5” data=“citationList”}。

2. 重要定理与性质

积分定理

  1. 高斯定理(散度定理)
    ∭ V ( ∇ ⋅ F )   d V = ∯ ∂ V F ⋅ d S \iiint_V (\nabla \cdot \mathbf{F}) \, dV = \oiint_{\partial V} \mathbf{F} \cdot d\mathbf{S} V(F)dV= VFdS

    • 含义:向量场通过闭合曲面的通量等于其散度在曲面内体积的积分‌:ml-citation{ref=“2,3” data=“citationList”}。
  2. 斯托克斯定理(旋度定理)
    ∬ S ( ∇ × F ) ⋅ d S = ∮ ∂ S F ⋅ d l \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{l} S(×F)dS=SFdl

    • 含义:向量场沿闭合路径的环量等于其旋度在路径包围曲面上的积分‌:ml-citation{ref=“2,3” data=“citationList”}。

二阶运算关系

  • 拉普拉斯算子:标量的梯度的散度
    ∇ 2 f = ∇ ⋅ ( ∇ f ) = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 \nabla^2 f = \nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} 2f=(f)=x22f+y22f+z22f
    用于描述标量场的扩散特性(如热传导方程)‌:ml-citation{ref=“3,5” data=“citationList”}。

3. 物理意义与应用场景

  • 梯度

    • 温度场梯度 → 热流方向‌:ml-citation{ref=“1,3” data=“citationList”};
    • 电势梯度 → 电场强度方向‌:ml-citation{ref=“3,5” data=“citationList”}。
  • 散度

    • 电场散度 → 电荷密度(麦克斯韦方程)‌:ml-citation{ref=“3,5” data=“citationList”};
    • 流体速度场散度 → 流体压缩或膨胀速率‌:ml-citation{ref=“3,5” data=“citationList”}。
  • 旋度

    • 磁场旋度 → 电流密度(安培环路定律)‌:ml-citation{ref=“3,5” data=“citationList”};
    • 流体速度场旋度 → 涡旋强度(如台风中心)‌:ml-citation{ref=“3,5” data=“citationList”}。

:以上公式均假设函数具有足够光滑性(如二阶连续可导)‌:ml-citation{ref=“4,5” data=“citationList”}。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值