系统架构师考试学习笔记第五篇——架构设计补充知识(24)应用数学

本章考点:

        根据考试大纲,本课时涉及单项选择题,占2分左右。考查运筹学的相关知识,涉及题型范围较广,难度较大。本课时节选部分常规考题类型,希望广大考生尽量掌握。本课时知识架构如图24.1所示。

一、图论之最小生成树

        (1)定义:在连通的带权图的所有生成树中,权值和最小的那棵生成树(包含图中所有顶点的树),称作最小生成树。

        (2)针对问题:带权图的最短路径问题。
        (3)最小生成树的解法有普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法,我们常用克鲁斯卡尔算法。

【例】图24.2标明了六个城市(A~F)之间的公路(每条公路旁标注了其长度公里数)。为将部分公路改造成高速公路,使各个城市之间均可通过高速公路通达,至少要改造总计()公里的公路,这种总公里数最少的改造方案共有()个。
A.1000        B.1300        C.1600        D.2000

A.1              B.2              C.3               D.4

【解】依次选取长度最小的边,图24.2中有6个节点,则需要5条边(边数-节点数-1),因此有:AE、FD为200,AB、BF、AF、CD为400,所以最终方案有3种,如图24.3所示。

二、图论之最大流量

        (1)最大流量问题是一个特殊的线性规划问题。
        (2)针对问题:道路运输能力问题,管道流量问题等。
【例】图24.4标出了某地区的运输网。

        各节点之间的运输能力见表24.1。

从节点①到节点⑥的最大运输能力(流量)可以达到()万吨每小时。
A.26        B.23        C.22        D.21

【解】在本题中,从节点①到节点@可以同时沿多条路径运输,总的最大流量应是各条路径上的最大流量之和,每条路径上的最大流量应是其各段流量的最小值。
        解题时,每找出一条路径算出流量后,该路径上各段线路上的流量应扣除已经算过的流量,形成剩余流量。剩余流量为0的线段应将其删除(断开)。例如,路径①③⑤⑥的最大流量为10万吨.计算过后,该路径上各段流量应都减少10万吨。从而①③之间断开,③⑤之间的剩余流量是4万吨,⑤⑥之间的剩余流量为11万吨,如图24.5所示。

    
        同理,依次执行类似步骤:
        (1)路径①②⑤⑥的剩余最大流量为6万吨。计算过后,该路径上各段流量应都减少6万吨。从而①②之间断开,②⑤之间的剩余流量是1万吨,⑤⑥之间的剩余流量为5万吨,如图24.6所示。

        (2)路径①④⑥的剩余最大流量为5万吨。计算过后,该路径上各段流量应都减少5万吨。从而④⑥之间将断开,①④之间的剩余流量是5万吨,如图24.7所示

        (3)路径①④③⑤⑥的剩余最大流量为1万吨。计算过后,该路径上各段流量应都减少1万吨。从而④③之间断开,①④之间的剩余流量是4万吨,③⑤之间的剩余流量是3万吨,⑤③之间的剩余流量是4万吨,如图24.8所示。

        (4)路径①④②⑤⑥的剩余最大流量为1万吨。计算过后,该路径上各段流量应都减少1万吨。从而②⑤之间断开,①④之间、④②之间、⑤⑥之间的剩余流量是3万吨,如图24.9所示。

        至此,从节点①到节点⑥已经没有可通的路径,因此,从节点①到节点⑥的最大流量应该是所有可能运输路径上的最大流量之和,即10+6+5+1+l=23万吨。

三、线性规划

        (1)定义:线性规划是研究在有限的资源条件下,如何有效地使用这些资源达到预定目标的数学方法。从数学的角度来说,就是在一组约束条件下寻找目标表达式的极值问题。
        (2)针对问题:在资源约束下的生产问题等。
        (3)线性规划的常用解法是图解法和联立方程组法。

【例】某工厂计划生产甲、乙两种产品。生产每套产品所需的设备台时,A、B两种原材料,可获取利润以及可利用资源数量见表24.2,则应按()方案来安排计划以使该工厂获利最多。

A.生产甲2套,乙3套        B.生产甲1套,乙4套        C.生产甲3套,乙4套        D.生产甲4套,乙2套

【解】设甲生产x套,乙生产y套,则有:
        ①2x+3y≤14
        ②x≤2
        ③y≤4

        (1)图解法:将3个不等式均转化为方程,并在二维直角坐标系中表达为对应的直线。则这三条直线与X轴和Y轴围成的公共区间即为解区间。根据不等号判定,解区间是在三条直线的左方、下方。据此画图如图24.10所示。利润N-2x+3y,若N是一个常数,则该式表现为一条等值直线,当N变化时该式为一组平滑移动的等值线族。

        三条直线有P,、P2、P3三个交点,其中P2在解区间以外,显然是不可行解。P1、P3均为可行解,又在同一条等值线上(N相同,均为14),因此均为数学最优解。

        而根据题意,x与y均应为整数,所以P,不符合,只有P(1,4)符合,对应的答案为B。

(2)联立方程组法:
        1)将不等式①②变形为等式,并联立解方程得

        代入不等式③,符合,表明这是一组可行解。
        代入表达式2x+3y,得到14。
        2)同样联立等式②③解得

  

        代入不等式①,不符合,表明这是一组不可行解。
        3)同样联立等式①③解得

        代入不等式②,符合,表明这是一组可行解。
        代入表达式2x+3y,得到14。
        显然,1)、3)两组解在数学上均能得到最大获利,但是10/3套显然并不符合题义要求,只有x取1,y取4时,利润最大,是14万元。答案为B。

        总结:
        图解法很直观,有解、无解、最优解所在位置一目了然,不会丢失正解;而联立方程组法可能丢失正解(例如最优解在X轴或Y轴交点上,而不在各直线之间的交点上)。同时,如果条件不等式很多(>3),图解法也有明显的计算优势,其计算量是0();而联立方程组法的计算量是O(n)。但是,如果未知数为3个或以上,则图解法的难度将增大,这时联立方程组法将成为主要的方法。
        线性规划问题的解有以下可能:
(1)有唯一最优解,在解区间多边形的某个顶点上。
(2)有无穷多最优解,只要能找到两个不同的最优解,则一定有无穷多个最优解。
(3)无界解,有无穷多的解,但是没有最优解,原因是缺少必要的约束条件。
(4)无可行解,原因是约束条件互相矛盾。

四、动态规划

        (1)定义:动态规划是一种将问题实例分解为更小的、相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略。

        (2)针对问题:装货最大价值问题。

        【例】用一辆载重量为10吨的卡车装运某仓库中的货物(不用考虑装车时货物的大小),这些货物单件的重量和运输利润见表24.3。适当选择装运一些货物各若干件,就能获得最大总利润()元。

A.530        B.534        C.536        D.538

【解】若想获得最高利润最理想的方式是10吨都装满,且装的货物是单位利润最高的那些货物。因此,将每种货物的单位利润计算出来,见表24.4。由表中数据可知,D单位利润最大,可以装2件8吨,剩余2吨可以选择单位利润第二大的A,装2件,此时的最大利润为538元。
答案为D。

五、决策分析

        (1)定义:决策分析指从若干可能的方案中通过决策分析技术,例如期望值法或决策树法等选择其一的决策过程,是一种定量分析方法。
        (2)针对问题:期望值问题,决策树问题。
        (3)预期货币价值或者期望货币值(Expected Monetary Value,EMV):把某方案的每个可能结果所获得的收益与其发生概率相乘之后加总,即得到该方案的 EMV。通过比较各方案的 EMV来决策采用哪一个方案。该方法常常与决策树技术相辅相成。
        (4)解题技巧:决策树在最左边做决策,所以需要从右向左逐层计算化简,特别是条件复杂时更应如此。
【例】某货运公司要从A地向B地的用户发送一批价值为9000元的货物。从A地到B地有水、陆两条路线。走陆路时比较安全,其运输成本为1000元:走水路时一般情况下的运输成本只要700元,不过一旦遇到暴风雨天气,则会造成相当于这批货物总价值10%的损失。根据历年情况,这期间出现暴风雨天气的概率为15%,那么该货运公司该选哪一个方案?
【解】先画出决策树,如图24.11所示。

        根据图24.11,走水路时,成本为700元的概率为85%,成本为1600元的概率为15%,因此,走水路的期望成本为(700x85%)+(1600x15%)=835元;走陆路时,其成本为(1000x85%)+(1000x15%)=1000元。所以,走水路的期望成本小于走陆路的成本,应该选择走水路。

六、不确定型决策论

(1)定义:不确定型决策是在无法估计系统行动方案所处状态概率的情况下进行的决策。它与决策分析相反,决策分析是根据不同方案的收益与概率来量化计算出客观决策依据的方法论。
(2)决策者根据自己的主观倾向进行决策,可分为5种准则,分别为乐观主义准则、悲观主义准则、折中主义准则、等可能性准则和后悔值准则。
        1)乐观主义准则,也称为“最大最大准则”,其决策原则是“大中取大”。决策者依次在决策表中的各个投资方案所对应的各个结果中选择出最大结果并记录,最后再从这些结果中选出最大者,其所对应的方案就是应该采取的决策方案。
        2)悲观主义准则,也称为“最大最小准则”,其决策原则是“小中取大”。决策者依次在决策表中的各个投资方案所对应的各个结果中选择出最小结果并记录,再从这些结果中选出最大者,其所对应的方案就是应该采取的决策方案。
        3)后悔值准则,也称为“最小最大后悔值”,该决策法的基本原理为:将每种自然状态的最高值(指收益矩阵,如果是损失矩阵应取最低值)定为该状态的理想目标,并将该状态中的其他值与最高值相比,所得之差作为未达到理想的后悔值。为了提高决策的可靠性,在每一方案中选取最大的后悔值,再在各方案的最大后悔值中选取最小值作为决策依据,与该值所对应的方案即为入选方案。
【例】某公司需要根据下一年度宏观经济的增长趋势预测决定投资策略。宏观经济增长趋势有不景气、不变和景气3种,投资策略有积极、稳健和保守3种,各种状态收益见表24.5.

【解】
(1)若根据乐观主义准则,表24.5中积极方案的最大结果是500,稳健方案的最大结果是300,保守方案的最大结果是400,三者的最大值是500.因此,选择其对应的积极投资方案。
(2)若根据悲观主义准则,表24.5中积极方案的最小结果是50,稳健方案的最小结果是150,保守方案的最小结果是200,三者的最大值是200.因此,选择其对应的保守投资方案。
(3)若根据后悔值准则,根据表24.5可以得出后悔值矩阵,见表24.6.

        在表24.6中,积极方案的最大后悔值为350,稳健方案的最大后悔值为250,保守方案的最大后悔值为300,三者中的最小值者为250.因此,选择其对应的稳健投资方案。

七、课后练习

1.某小区有七栋楼房①~⑦,如图24.12所示,各楼房之间可修水管路线的长度(单位:百米)已标记在连线旁。为修建连通各个楼房的水管,该小区内部水管的总长度至少为()百米。

A.20        B.21        C.24        D.27

2.图24.14标出了某产品从产地Vs到销地Vt的运输网,箭线上的数字表示这条输线的最大通过能力(流量)(单位:万吨每小时)。产品经过该运输网从Vs到Vt的最大运输能力可以达到()万吨每小时。

A.5        B.6        C.7        D.8

3.已知在如下线性约束条件下:2x+3y≤30,x+2y≥10,x≥5y≥0,则目标函数2x+3y的极小值为()。
A. 16.5        B.17.5        C.20        D.25

4.生产某种产品有两个建厂方案:①建大厂,需要初期投资500万元。如果产品销路好,每年可以获利200万元;如果销路不好,每年会亏损20万元。②建小厂,需要初期投资200万元。如果产品销路好,每年可以获利100万元;如果销路不好,每年只能获利20万元。
市场调研表明,未来2年,这种产品销路好的概率为70%.如果这2年销路好,则后续5年销路好的概率上升为80%;如果这2年销路不好,则后续5年销路好的概率仅为10%.为取得7年最大总收益,决策者应()。
A.建大厂,总收益超500万元
B.建大厂,总收益略多于300万元
C.建小厂,总收益超500万元
D.建小厂,总收益略多于300万元

5.某企业要投产一种新产品,生产方案有四个:A-新建全自动生产线;B-新建半自动生产线;C-购置旧生产设备;D-外包加工生产。未来该产品的销售前景估计为较好、一般和较差三种不同情况下该产品的收益值见表24.7(单位:百万元)。
用后悔值(在同样的条件下,宣传方案所产生的收益损失值)的方案决策应该选()方案。
A.新建全自动生产线
B.新建半自动生产线
C.购置旧生产设备
D.外包加工生产

答案解析:

1、解析:
采用最小生成树的克鲁斯卡尔算法。
找出所有长度为2的边,试图将它们连接,有①③、④⑥,检验后没有形成闭环,可行。
找出所有长度为3的边,试图将它们连接,有①⑦、③⑥,检验后没有形成闭环,可行。
找出所有长度为4的边,试图将它们连接。有①②和②⑥.如果全部连接则形成闭环,需舍弃其中一个,这里舍弃①②.
找出所有长度为5的边,试图将它们连接,有③④,如连接则形成闭环,需舍弃。
找出所有长度为6的边,试图将它们连接,有①④、⑤⑥,如连接①④则形成闭环,需舍弃;连接⑤⑥可行。
至此所有节点均完成连接,如图24.13所示。总长度为2x2+3x2+4+6=20百米。

答案:A

2、解析:从Vs到Vt,每条路径的最大流量等于该路径中各段流量的最小值,如Vs→V2→V4→
Vt,最小值为3,因此该条路径最大流量为3.同理,Vs→V1→V3→Vt最小值为2.两条路径相加,最大流量为5,其他路径没有剩余流量可供使用,因此总的最大流量为5.
答案:A

3、解析:由于约束条件较多,应采用图解法。
根据题意画出可行区域,如图24.15中阴影部分所示。

        显然,该题有唯一的最优解,在x=5与x+2y=10的交点处,联立解得x=5y=2.5,因此2x+3y最小值为2x5+3x2.5=17.5.
答案:B

4、解析:采用决策分析方法解答如下:
首先根据题意画出决策树示意图,如图24.16所示。

        从右往左逐层计算各个节点。
        首先计算④⑤⑥⑦四个节点的期望值:
(1)建大厂后5年销路好期望值:[200x0.8+(-20)x0.2]x5=780.
(2)建大厂后5年销路不好期望值;[200x0.1+(-20)x0.9]x5=10.
(3)建小厂后5年销路好期望值;(100x0.8+20x0.2)x5=420.
(4)建小厂后5年销路好不期望值:(100x0.1+20x0.9)x5=140.

        再在②③节点处按如下算式计算两年的期望值(扣除投资额),并将结果(7年总收益)写在节点处。
(1)建大厂2年期望值:[200x0.7+(-20)x0.3]x2+(780x0.7+10x0.3)-500=317.
(2)建小厂2年期望值:(100x0.7+20x0.3)x2+(420x0.7+140x0.3)-200=288.
        由于建大厂的总收益值大于建小厂的总收益值,因此决定建大厂。
答案:B

5、解析:
第一步:分别计算每个方案在收益较好、一般和较差情况下的后悔值。如:在收益较好的情况下,方案A的利润最高是800,因此A的后悔值=800-800=0;方案B的后悔值=800-600=200;方案C的后悔值=800-450=350;方案D的后悔值=800-300=500.同理计算收益一般、较差情况下的后悔值,然后得到表24.8.

第二步:确定每个方案的最大后悔值。A的最大后悔值为280,B为200,C为350,D为500.
第三步;确定决策方案。选择各方案最大后悔值最小的,即方案B为最佳方案。
答案:B

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SheldonK

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值