希尔排序

希尔排序(Shell's Sort)是插入排序的一种又称"缩小增量排序"(Diminishing Increment Sort),是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。

实现思路:

首先把较大的数据集合分割成若干个小组(逻辑上分组,以下标来分组),然后对每一个小组分别进行插入排序,此时,插入排序所作用的数据量比较小(每一个小组),插入的效率比较高

在这里插入图片描述
从上图可以看出,是以下标的相隔距离作为增量来进行分组,我们选取的这个距离称作为增量。在每个分组进行插入排序后,各个分组就变成了有序的了
在这里插入图片描述

显然,经过一轮排序后,整个数组变得部分有序
在这里插入图片描述

接下来,我们将增量缩小,可以缩小为原增量的一半,继续分组,由于增量缩小,所以每个分组的元素会变多,但由于数组已经部分有序,所以在对每个分组进行插入排序时同样是比较高效的。
在这里插入图片描述

对每个分组进行插入排序后
在这里插入图片描述

最后继续将增量设置为上一个增量的一半,此时整个数组被分为一组,但有序程度已经很大改进,因此插入排序仍然可以较高效的进行。
在这里插入图片描述

最后再对这组数组进行插入排序后,俨然数组已经是有序的了。

代码实现:
def shellSort(arr):
    length = len(arr)
    gap = length // 2
    while gap > 0:
        for i in range(gap,length):
            j, cur = i, arr[i]
            while (j - gap >= 0) and (cur < arr[j - gap]):
                arr[j] = arr[j - gap]
                j -= gap
            arr[j] = cur
        gap = gap // 2


if __name__ == "__main__":
    arr = [5,7,8,3,1,2,4,6]

    print('排序前:',arr)
    shellSort(arr)
    print('排序后:',arr)
排序前: [5, 7, 8, 3, 1, 2, 4, 6]
排序后: [1, 2, 3, 4, 5, 6, 7, 8]
复杂度:

时间复杂度:
希尔排序的时间复杂度的计算比较复杂,它的复杂度与增量序列有关,即我们每次选择的增量所组成的序列,如果序列是这样的{1,2,4,8,....},实际上这种增量序列并不是很好,使用这种增量序列的时间复杂度最坏情况为 O ( n 2 ) O(n^2) O(n2),而如果增量序列为 { 1 , 3 , 7 , . . . , 2 k − 1 } \{1,3,7,...,2^{k-1}\} {1,3,7,...,2k1},这种序列的时间复杂度最坏情况为 O ( n 1.5 ) O(n^{1.5}) O(n1.5)。目前较为好的时间复杂度为 O ( n 1.3 ) O(n^{1.3}) O(n1.3),其增量序列为{1,5,19,41,109,....}。总之,希尔排序的时间复杂度一般介于 O ( n l o g n ) O(nlog_n) O(nlogn) O ( n 2 ) O(n^2) O(n2)之间。

空间复杂度: O ( 1 ) O(1) O(1)in-place对数组进行排序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值