- 博客(5)
- 收藏
- 关注
转载 支持向量机(support vector machines, SVM)
一、SVM简介 二、线性SVM算法原理 三、非线性SVM算法原理 一、SVM简介 支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化...
2020-05-01 23:08:48 878 1
转载 条件随机场(CRF)
假设你有许多小明同学一天内不同时段的照片,从小明提裤子起床到脱裤子睡觉各个时间段都有(小明是照片控!)。现在的任务是对这些照片进行分类。比如有的照片是吃饭,那就给它打上吃饭的标签;有的照片是跑步时拍的,那就打上跑步的标签;有的照片是开会时拍的,那就打上开会的标签。问题来了,你准备怎么干? 一个简单直观的办法就是,不管这些照片之间的时间顺序,想办法训练出一个多元分类器。就是用一些打好标签的照片作为...
2020-04-28 09:27:33 177
转载 EM算法
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断等等。 1.EM算法要解决的问题 EM算法解决这个的思路是使用启发式的迭代方法,既然我们无法直接求出模型分布参数,那么我们可以先猜想隐含数据(EM算法的E步),接着基于观察数据和猜测的隐含数据一起来极大化对数...
2020-04-26 23:10:10 251
转载 朴素贝叶斯
朴素贝叶斯算法原理小结 在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。对于大多数的分类算法,比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数Y=f(X)Y=f(X),要么是条件分布P(Y|X)P(Y|X)。但是朴素贝叶斯却是生成方法,也就是直接找出特征输出Y和特征X的联合分布P(X,Y)P(X,Y)...
2020-04-23 23:56:14 226
转载 线性回归
原理 损失函数,代价函数,目标函数 优化方法 evaluation 的指标 sklearn参数分析 原理: 使用多项式线性函数来拟合,得到回归函数,可用于预测变量之间的相互关系。 有数据集,其中, 其中n表示变量的数量,d表示每个变量的维度。 可以用以下函数来描述y和x之间的关系: ,确定正在上传…重新上传取消转存失败重新上传取消的值 ...
2020-04-21 21:12:25 225
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人