sigmoid激活函数:
本节通过一个详细的例子来说明神经网络是怎样计算复杂非线性函数的输入的;
由x1和x2两个输入特征,都是二进制的;只画了两个正样本和两个负样本;
这是右侧复杂的机器学习的一个简化版本;
我们的目标是学习一个非线性的判断边界,以区分正样本和负样本;
首先我们用左边的例子来说明神经网络如何训练出这
个非线性判断边界;
x1 XOR x2和NOT (x1 XOR x2)
我们先从一个简单的能够拟合AND运算的网络入手:
首先,加一个偏置单元+1;
在神经网络图中标注出这些参数或权重,有利于后续的工作;
下面两个图是用来展示神经网络中单个神经元如何实现逻辑运算的:
从真值表中可以看出实现了逻辑与的功能:
从真值表中可以看出实现了逻辑或的功能: