numpy
kingloneye
微信联系方式:kxswx001
展开
-
numpy 简单练习(五)
练习:英国和美国各自youtube1000的数据结合之前的matplotlib绘制出各自的评论数量的直方图 US_video_data_numbers.cs 数据分别是 点击 喜欢 不喜欢 评论 us_path = "D:/test/youtube_video_data/US_video_data_numbers.csv" uk_path = "D:/test/youtube_video_data/GB_video_data_numbers.csv" t1 = np.loadtxt(us_path,deli原创 2020-07-28 16:22:29 · 303 阅读 · 0 评论 -
numpy之数组的拼接(水平、竖直)(四)
数组的拼接 数组t1 t1 = np.arange(12).reshape(2,6) print(t1) [[ 0 1 2 3 4 5] [ 6 7 8 9 10 11]] 数组t2 t2 = np.arange(12,24).reshape(2,6) print(t2) [[12 13 14 15 16 17] [18 19 20 21 22 23]] 数组t1 竖直拼接 数组t2 vstack print(np.vstack((t1,t2))) [[ 0 1 2 3原创 2020-07-28 16:09:13 · 1603 阅读 · 0 评论 -
numpy之索引、切片、三目运算(三)
import numpy as np t = np.arange(12).reshape(3,4) print(t) [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] 取第二行 print(t[1]) //[4 5 6 7] 取第二列 print(t[:,1]) //[1 5 9] 取多行 print(t[1:3]) [[ 4 5 6 7] [ 8 9 10 11]] 取多列 print(t[:,1:4]) [[ 1 2 3] [ 5原创 2020-07-28 15:51:05 · 220 阅读 · 0 评论 -
numpy之读取数据、转置(二)
轴 # 轴 2表示0轴,5表示1轴 t = np.arange(0,10).reshape((2,5)) print(t) [[0 1 2 3 4] [5 6 7 8 9]] numpy 读取数据 us_file_path = "D:/test/youtube_video_data/US_video_data_numbers.csv" t1 = np.loadtxt(us_file_path,delimiter=",",dtype="int") print(t1) [[4394029 32005原创 2020-07-28 15:43:53 · 303 阅读 · 0 评论 -
numpy之创建数组、查看数组形状、数组的计算(一)
[0.35531847 0.33282092 0.6839363 0.39138503 0.21946102 0.22605784 0.56158056 0.66337016 0.75136875 0.19762917]原创 2020-07-28 15:25:33 · 1676 阅读 · 0 评论