DES对称加密及三重DES(3DES)

一、DES

概述

DES算法全称为Data Encryption Standard,即数据加密算法,它是IBM公司于1975年研究成功并公开发表的。DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。

算法原理

DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,其算法主要分为两步:

(1)初始置换

其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则为将输入的第58位换到第一位,第50位换到第2位……依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0是右32位,例:设置换前的输入值为D1D2D3……D64,则经过初始置换后的结果为:L0=D58D50……D8;R0=D57D49……D7。

(2)逆置换

经过16次迭代运算后,得到L16、R16,将此作为输入,进行逆置换,逆置换正好是初始置换的逆运算,由此即得到密文输出。

二、 两个密钥的三重DES

由于DES密钥只有56bit,易于遭受穷举时攻击。作为一种替代加密方案,Tuchman提出使用两个密钥的三重DES加密方法,并在1985年成为美国的一个商用加密标准。该方法使用两个密钥,执行三次DES算法,如图2所示。加密的过程是加密-解密-加密,解密的过程是解密-加密-解密。

采用两个密钥进行三重加密的好处有:①两个密钥合起来有效密钥长度有112bit,可以满足商业应用的需要,若采用总长为168bit的三个密钥,会产生不必要的开销。②加密时采用加密-解密-加密,而不是加密-加密-加密的形式,这样有效的实现了与现有DES系统的向后兼容问题。因为当K1=K2时,三重DES的效果就和原来的DES一样,有助于逐渐推广三重DES。③三重DES具有足够的安全性,目前还没有关于攻破三重DES的报道。

 什么是三重DES

三重DES是为了增加DES的强度,将DES重复3次所得到的一种密码算法,通常缩写为3DES。

二 三重DSE加密

明文经过三次DES处理才能变成最后的密文,由于DES密钥长度实质是56位,因此3DES的密钥长度就是56*3=168比特。

注意:三重DES的三次DES加密是(加密->解密->加密),而不是(加密->加密->加密),为什么这样设计呢?看看下面这张图就明白了。

如果三次DES加密的密钥都相同,前两次DES,相当于还原成了密文,这样看来,真正起作用的只是最后一次。这样做的好处是:三重DES对DES具备向下兼容性。

还有一种密码叫DES-EDE2,下面我们用图来描述这一种密码。

当然,只有三个密钥互不相等才是正宗的DES-EDE3。

三 三重DES解密

三重DES的解密过程和加密过程正好相反,是以密钥3、密钥2、密钥1的顺序执行解密->加密->解密的操作。

四 三重DES现状

尽管三重DES目前还被银行等机构使用,但其处理速度不高,除了特别重视向下兼容性的情况外,很少被用于新的用途。

pydes:
 

#-*- coding: utf8 -*-

#Initial permut matrix for the datas
# IP initial permut
PI = [58, 50, 42, 34, 26, 18, 10, 2,
      60, 52, 44, 36, 28, 20, 12, 4,
      62, 54, 46, 38, 30, 22, 14, 6,
      64, 56, 48, 40, 32, 24, 16, 8,
      57, 49, 41, 33, 25, 17, 9, 1,
      59, 51, 43, 35, 27, 19, 11, 3,
      61, 53, 45, 37, 29, 21, 13, 5,
      63, 55, 47, 39, 31, 23, 15, 7]

#Initial permut made on the key
CP_1 = [57, 49, 41, 33, 25, 17, 9,
        1, 58, 50, 42, 34, 26, 18,
        10, 2, 59, 51, 43, 35, 27,
        19, 11, 3, 60, 52, 44, 36,
        63, 55, 47, 39, 31, 23, 15,
        7, 62, 54, 46, 38, 30, 22,
        14, 6, 61, 53, 45, 37, 29,
        21, 13, 5, 28, 20, 12, 4]

#Permut applied on shifted key to get Ki+1
CP_2 = [14, 17, 11, 24, 1, 5, 3, 28,
        15, 6, 21, 10, 23, 19, 12, 4,
        26, 8, 16, 7, 27, 20, 13, 2,
        41, 52, 31, 37, 47, 55, 30, 40,
        51, 45, 33, 48, 44, 49, 39, 56,
        34, 53, 46, 42, 50, 36, 29, 32]

#Expand matrix to get a 48bits matrix of datas to apply the xor with Ki
E = [32, 1, 2, 3, 4, 5,
     4, 5, 6, 7, 8, 9,
     8, 9, 10, 11, 12, 13,
     12, 13, 14, 15, 16, 17,
     16, 17, 18, 19, 20, 21,
     20, 21, 22, 23, 24, 25,
     24, 25, 26, 27, 28, 29,
     28, 29, 30, 31, 32, 1]

#SBOX
S_BOX = [
         
[[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7],
 [0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8],
 [4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0],
 [15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13],
],

[[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10],
 [3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5],
 [0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15],
 [13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9],
],

[[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8],
 [13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1],
 [13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7],
 [1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12],
],

[[7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15],
 [13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9],
 [10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4],
 [3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14],
],  

[[2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9],
 [14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6],
 [4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14],
 [11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3],
], 

[[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11],
 [10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8],
 [9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6],
 [4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13],
], 

[[4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1],
 [13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6],
 [1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2],
 [6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12],
],
   
[[13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7],
 [1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2],
 [7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8],
 [2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11],
]
]

#Permut made after each SBox substitution for each round
P = [16, 7, 20, 21, 29, 12, 28, 17,
     1, 15, 23, 26, 5, 18, 31, 10,
     2, 8, 24, 14, 32, 27, 3, 9,
     19, 13, 30, 6, 22, 11, 4, 25]

#Final permut for datas after the 16 rounds
PI_1 = [40, 8, 48, 16, 56, 24, 64, 32,
        39, 7, 47, 15, 55, 23, 63, 31,
        38, 6, 46, 14, 54, 22, 62, 30,
        37, 5, 45, 13, 53, 21, 61, 29,
        36, 4, 44, 12, 52, 20, 60, 28,
        35, 3, 43, 11, 51, 19, 59, 27,
        34, 2, 42, 10, 50, 18, 58, 26,
        33, 1, 41, 9, 49, 17, 57, 25]

#Matrix that determine the shift for each round of keys
SHIFT = [1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1]

def string_to_bit_array(text):#Convert a string into a list of bits
    array = list()
    for char in text:
        binval = binvalue(char, 8)#Get the char value on one byte
        array.extend([int(x) for x in list(binval)]) #Add the bits to the final list
    return array

def bit_string_to_array(bitText):
    array = list()
    for bit in bitText.replace(" ",""):
        array.append(int(bit))
    return array

def bit_array_to_string(array): #Recreate the string from the bit array
    res = ''.join([chr(int(y,2)) for y in [''.join([str(x) for x in _bytes]) for _bytes in  nsplit(array,8)]])
    return res

# 根据ascil编码把字符转成对应的二进制
def binvalue(val, bitsize): #Return the binary value as a string of the given size
    binval = bin(val)[2:] if isinstance(val, int) else bin(ord(val))[2:]
    if len(binval) > bitsize:
        raise ("binary value larger than the expected size")
    while len(binval) < bitsize:
        binval = "0"+binval #Add as many 0 as needed to get the wanted size
    return binval

def nsplit(s, n):#Split a list into sublists of size "n"
    return [s[k:k+n] for k in range(0, len(s), n)]

def showBits(s, n):#Split a list into sublists of size "n"
    return " ".join(["".join([str(i) for i in s[k:k+n]]) for k in range(0, len(s), n)])

ENCRYPT=1
DECRYPT=0

class des():
    def __init__(self):
        self.password = None
        self.text = None
        self.keys = list()
        
    def run(self, key, text, action=ENCRYPT):
        self.password = key
        self.text = text

        # 产生所有子密钥
        self.generatekeys() #Generate all the keys
        result = list()

        block = self.text
        block = self.permut(block,PI)#Apply the initial permutation

        g, d = nsplit(block, 32) #g(LEFT), d(RIGHT)
        tmp = None
        for i in range(16): #Do the 16 rounds
            d_e = self.expand(d, E) #Expand d to match Ki size (48bits)
            if action == ENCRYPT:
                tmp = self.xor(self.keys[i], d_e)#If encrypt use Ki
            else:
                tmp = self.xor(self.keys[15-i], d_e)#If decrypt start by the last key
            tmp = self.substitute(tmp) #Method that will apply the SBOXes
            tmp = self.permut(tmp, P)
            tmp = self.xor(g, tmp)   # tmp = f(Rn-1,Kn)
            g = d   # Ln = Rn-1
            d = tmp # Rn = Ln-1 + f(Rn-1,Kn)
            print(f"L{i+1}:{showBits(g, 8)}")
            print(f"R{i + 1}:{showBits(d, 8)}")
        result += self.permut(d+g, PI_1) #Do the last permut and append the result to result
        final_res = "".join([str(i) for i in result])

        return final_res

        # if padding and action==DECRYPT:
        #     return self.removePadding(final_res) #Remove the padding if decrypt and padding is true
        # else:
        #     return final_res #Return the final string of data ciphered/deciphered
    
    def substitute(self, d_e):#Substitute bytes using SBOX
        subblocks = nsplit(d_e, 6)#Split bit array into sublist of 6 bits
        result = list()
        for i in range(len(subblocks)): #For all the sublists
            block = subblocks[i]
            row = int(str(block[0])+str(block[5]),2)#Get the row with the first and last bit
            column = int(''.join([str(x) for x in block[1:][:-1]]),2) #Column is the 2,3,4,5th bits
            val = S_BOX[i][row][column] #Take the value in the SBOX appropriated for the round (i)
            bin = binvalue(val, 4)#Convert the value to binary
            result += [int(x) for x in bin]#And append it to the resulting list
        return result

    # 置换
    def permut(self, block, table):#Permut the given block using the given table (so generic method)
        return [block[x-1] for x in table]

    # 扩展
    def expand(self, block, table):#Do the exact same thing than permut but for more clarity has been renamed
        return [block[x-1] for x in table]
    
    def xor(self, t1, t2):#Apply a xor and return the resulting list
        return [x^y for x,y in zip(t1,t2)]
    
    def generatekeys(self):#Algorithm that generates all the keys
        self.keys = []
        # 把密钥转成这个形式 00110100 11000010.....
        key = self.password
        key = self.permut(key, CP_1) #Apply the initial permut on the key
        g, d = nsplit(key, 28) #Split it in to (g->LEFT),(d->RIGHT)
        for i in range(16):#Apply the 16 rounds
            g, d = self.shift(g, d, SHIFT[i]) #Apply the shift associated with the round (not always 1)
            tmp = g + d #Merge them
            self.keys.append(self.permut(tmp, CP_2)) #Apply the permut to get the Ki

    def shift(self, g, d, n): #Shift a list of the given value
        return g[n:] + g[:n], d[n:] + d[:n]
    
    def addPadding(self):#Add padding to the datas using PKCS5 spec.
        pad_len = 8 - (len(self.text) % 8)
        self.text += pad_len * chr(pad_len)
    
    def removePadding(self, data):#Remove the padding of the plain text (it assume there is padding)
        pad_len = ord(data[-1])
        return data[:-pad_len]
    
    def encrypt(self, key, text):
        return self.run(key, text, ENCRYPT)
    
    def decrypt(self, key, text):
        return self.run(key, text, DECRYPT)


if __name__ == '__main__':
    plain_text = bit_string_to_array("00000001 00100011 01000101 01100111 10001001 10101011 11001101 11101111")
    key = bit_string_to_array("00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001")
    d = des()
    r = d.encrypt(key,plain_text)
    print(r)

    # 测试cyberchef
    r = bit_string_to_array("01011010 11110101 00010101 10110000 01001011 11101111 01010010 01000001")
    r2 = d.decrypt(key,r)
    print("Ciphered: %r" % r)
    print("Deciphered: ", r2)

# 07040502033636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636363636
#
# 6d6e6f68695c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c5c


l = [1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0]
def showBits(s, n):#Split a list into sublists of size "n"
    return " ".join(["".join([str(i) for i in s[k:k+n]]) for k in range(0, len(s), n)])

print(showBits(l, 8))

CBC模式调用:

from pyDes import des, CBC, PAD_PKCS5
import binascii

# 秘钥
KEY = 'Codeoooo'


def des_encrypt(s):
    """
    DES 加密
    :param s: 原始字符串
    :return: 加密后字符串,16进制
    """
    secret_key = KEY  # 密码
    iv = secret_key  # 偏移
    # secret_key:加密密钥,CBC:加密模式,iv:偏移, padmode:填充
    des_obj = des(secret_key, CBC, iv, pad=None, padmode=PAD_PKCS5)
    # 返回为字节
    secret_bytes = des_obj.encrypt(s, padmode=PAD_PKCS5)
    # 返回为16进制
    return bytes.decode(binascii.b2a_hex(secret_bytes))


def des_descrypt(s):
    """
    DES 解密
    :param s: 加密后的字符串,16进制
    :return:  解密后的字符串
    """
    secret_key = KEY
    iv = secret_key
    des_obj = des(secret_key, CBC, iv, pad=None, padmode=PAD_PKCS5)
    decrypt_str = des_obj.decrypt(binascii.a2b_hex(s), padmode=PAD_PKCS5)
    return bytes.decode(decrypt_str)

print(des_encrypt('codeooo'))
print(des_descrypt('4ff67fd9b661f01d'))

ECB模式调用:

from pyDes import des, ECB, PAD_PKCS5
import base64

DES_SECRET_KEY = '12345678'
data = 'codeooo'
des_obj = des(DES_SECRET_KEY, ECB, DES_SECRET_KEY, padmode=PAD_PKCS5)
secret_bytes = str(base64.b64encode(des_obj.encrypt(data)), encoding = 'utf-8')
print(secret_bytes)

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Codeooo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值