用Canny算子检测图像轮廓
1、实现原理
(1)原因:Sobel算子在对梯度幅值进行阈值化,可得到一个二值边缘分布图。选择合适的阈值不容易。如果阈值太低,就会保留太多(厚)的边缘;而如果选择更严格(高)的阈值,就会留下断裂的边缘。
(2)Canny算子通常基于Sobel算子。它的核心理念是用两个不同的阈值来判断哪个点属于轮廓:一个低阈值,一个高阈值。
(3)选择低阈值时,要保证它能包含属于重要图像轮廓的全部边缘像素。
(4)高阈值的作用就是界定重要轮廓的边缘。
(5)具体的做法是:
在低阈值边缘分布图上,只保留具有连续路径的边缘点,同时把边缘点连接到属于高阈值分布图的边缘上。这样一来,高阈值分布图上的所有边缘点都保留下来,而低阈值分布图上边缘点的孤立链全部被移除。这种基于两个阈值获得二值分布图的策略,称为滞后阈值化。
(6)在进行滞后阈值化之前,如果梯度幅值不是梯度方向上的最大值,那么对应的边缘点都会被移除。
2、实现代码
代码:
#include <opencv2/opencv.hpp>