算法
CL@NPU
这个作者很懒,什么都没留下…
展开
-
AdaBoostClassifier和AdaBoostRegressor参数
AdaBoostClassifier使用了两种Adaboost分类算法的实现,SAMME和SAMME.R。而AdaBoostRegressor则使用了我们原理篇里讲到的Adaboost回归算法的实现,即Adaboost.R2。框架参数:两者大部分框架参数相同。1、base_estimator:AdaBoostClassifier和AdaBoostRegressor都有,即我们的弱分类学习器...转载 2019-06-25 16:40:15 · 9327 阅读 · 0 评论 -
leetCode(15)
给定一个包含 n 个整数的数组nums,判断nums中是否存在三个元素 a,b,c ,使得a + b + c = 0 ?找出所有满足条件且不重复的三元组。注意:答案中不可以包含重复的三元组来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/3sum著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。如果...原创 2019-07-10 19:07:21 · 88 阅读 · 0 评论 -
scikit-learn回归类库使用
与回归有关的主要有三个类,分别是:LogisticRegression, LogisticRegressionCV 和logistic_regression_path。其中LogisticRegression和LogisticRegressionCV的主要区别是LogisticRegressionCV使用了交叉验证来选择正则化系数C。而LogisticRegression需要自己每次指定一个正...转载 2019-06-29 12:56:57 · 250 阅读 · 0 评论 -
SVM
函数间隔与几何间隔:函数间隔定义为:超平面=0函数间隔其实就是类别标签乘上了f(x)的值,可以看到,该值永远是大于等于0的。f(x)值越大的点到分类超平面的距离当然越远。但是函数间隔存在一定的问题,上述定义的函数间隔虽然可以表示分类预测的正确性和确信度,但在选择分类 超平面时,只有函数间隔还远远不够,因为如果成比例的改变 w 和 b,如将他们改变为 3w 和 3b,虽然此时超 ...转载 2019-06-29 10:39:07 · 102 阅读 · 0 评论 -
LeetCode(5)
给定一个字符串s,找到s中最长的回文子串。你可以假设s的最大长度为 1000。解法:动态规划 dp[i][j]表示s[i]到s[j]组成的子串是否是回文。dp[i][j]=true意味着dp[i+1][j-1]=true且s[i]==s[j].public String longestPalindrome(String s) { if(s==null||s....原创 2019-07-09 15:36:33 · 202 阅读 · 0 评论 -
随机森林
bagging 是由不同的分类器(1.数据随机化 2.特征随机化)经过训练,综合得出的出现最多分类结果;boosting 是通过调整已有分类器错分的那些数据来获得新的分类器,得出目前最优的结果。bagging 中的分类器权重是相等的;而 boosting 中的分类器加权求和,所以权重并不相等,每个权重代表的是其对应分类器在上一轮迭代中的成功度。随机森林属于bagging。是利用多棵树对样本...转载 2019-06-24 19:58:58 · 128 阅读 · 0 评论 -
AdaBoost算法
对于Boosting算法,需要解决两个问题:如何调整训练集,使得在训练集上训练的弱分类器得以进行; 如何将训练得到的各个弱分类器联合起来形成强分类器。针对Boosting需要解决的两个问题,AdaBoost算法采用了以下策略:使用加权后选取的训练数据代替随机选取的训练样本,这样将训练的焦点集中在比较难分的训练数据样本上;将弱分类器联合起来,使用加权的投票机制代替平均投票机制。让分类效...转载 2019-06-24 19:35:17 · 258 阅读 · 0 评论 -
感知机
感知机是神级网络和SVM的基础。感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1。感知机学习的目标是求得一个能够将训练数据集正实例点和负实例点完全正确分开的分离超平面。如果是非线性可分的数据,则最后无法获得超平面。超平面:样本到超平面的距离:我们损失函数的优化目标,就是期望使误分类的所有样本,到超平面的距离之和最小。损失函数定义如下:...转载 2019-06-27 16:22:57 · 139 阅读 · 0 评论 -
模拟退火算法
从某一较高的温度出发,这个温度称为初始温度,伴随着温度参数的不断下降,算法中的解趋于稳定,但是,可能这样的稳定解是一个局部最优解,此时,模拟退火算法中会以一定的概率跳出这样的局部最优解,以寻找目标函数的全局最优解。其参数难以控制,不能保证一次就收敛到最优值,一般需要多次尝试才能获得(大部分情况下还是会陷入局部最优值)。观察模拟退火算法的过程,发现其主要存在如下三个参数问题:(1) 温度T的...转载 2019-06-24 14:28:35 · 296 阅读 · 0 评论 -
LeetCode(11)
题目描述:给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点(i,ai) 。在坐标内画 n 条垂直线,垂直线 i的两个端点分别为(i,ai) 和 (i, 0)。找出其中的两条线,使得它们与x轴共同构成的容器可以容纳最多的水。来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/container-with...原创 2019-07-08 15:04:07 · 104 阅读 · 0 评论 -
概率算法
概率算法大致分为4类:数值概率算法,蒙特卡洛算法,拉斯维加斯算法,舍德伍算法。1、数值概率算法:常用于解决数值计算的问题。该算法往往只能得到问题的近似解,并且该计算解的精度一般随着计算时间的增加而不断提高。例:设f(x)=1-x^2,计算定积分的值。分析:要计算定积分的值的几何含义就是f(x)与x轴y轴所围得面积(设为阴影)。又因为x,y轴所围的面积为1,所以随机点落入阴影的概率(在上...转载 2019-06-24 13:36:39 · 15340 阅读 · 0 评论 -
决策树算法调参
scikit-learn决策树算法类库内部实现是使用了调优过的CART树算法,既可以做分类,又可以做回归。1、特征选择标准:DecisionTreeClassifier:可以选择gini(基尼系数,默认)或entropy(信息增益)。DecisionTreeClassifier:可以使用mse(均方差,默认)或mae(平均绝对误差)。通常都是选择默认值。2、特征划分点选择标准s...转载 2019-06-26 16:56:43 · 2752 阅读 · 0 评论 -
leetCode(41)
public int firstMissingPositive(int[] nums) { int n=nums.length; boolean isContainOne=false; for(int i=0;i<nums.length;i++){ if(nums[i]==1){ ...原创 2019-07-16 16:52:28 · 98 阅读 · 0 评论