一、采用技术:
后端:Python+Django
前端:Vue+HTML+CSS+JS
数据库:MySQL
开发软件:PyCharm
二、系统功能:
随着网络商品的增加,从海量数据选择商品需要很多时间,根据用户与商品的已有信息完成对用户的商品推荐,为用户选择可能喜欢的商品。该系统的关键在于设计一种合适的算法,能够从大量数据中选择用户可能喜欢的商品,提供给用户。
推荐领域比较成熟的算法有基于内容的推荐算法、协同过滤算法、基于规则的推荐算法、基于效用的推荐算法、基于知识的推荐算法等。本系统采用基于用户的协同过滤算法实现商品推荐服务。基于用户的协调过滤算法的主要步骤如下:
(1)寻找与目标用户兴趣相似的用户集合;
(2)找到这个集合中的用户所喜欢的,然后把目标用户没有接触过的物品推荐给目标用户。
该算法的核心就是计算两个用户之间的兴趣相似度,给定用户u和用户v,令N(u)表示用户u感兴趣的物品集合,N(v)表示用户v感兴趣的物品集合,通过余弦相似度公式计算出两两用户之间的相似度,进行比较,最终筛选出与目标用户相似度最高的用户集合。余弦相似度公式为:
商品推荐系统运用Python技术和MySQL数据库技术,进行系统的实现,包括系统的界面的实现,业务逻辑流程的实现以及数据库的实现等。
三、运行截图:
四、论文目录: