Python+Django商品推荐系统源码+论文+开题报告

14 篇文章 0 订阅
13 篇文章 0 订阅

一、采用技术:

后端:Python+Django

前端:Vue+HTML+CSS+JS

数据库:MySQL

开发软件:PyCharm

二、系统功能:

随着网络商品的增加,从海量数据选择商品需要很多时间,根据用户与商品的已有信息完成对用户的商品推荐,为用户选择可能喜欢的商品。该系统的关键在于设计一种合适的算法,能够从大量数据中选择用户可能喜欢的商品,提供给用户。

推荐领域比较成熟的算法有基于内容的推荐算法、协同过滤算法、基于规则的推荐算法、基于效用的推荐算法、基于知识的推荐算法等。本系统采用基于用户的协同过滤算法实现商品推荐服务。基于用户的协调过滤算法的主要步骤如下:

(1)寻找与目标用户兴趣相似的用户集合;

(2)找到这个集合中的用户所喜欢的,然后把目标用户没有接触过的物品推荐给目标用户。

该算法的核心就是计算两个用户之间的兴趣相似度,给定用户u和用户v,令N(u)表示用户u感兴趣的物品集合,N(v)表示用户v感兴趣的物品集合,通过余弦相似度公式计算出两两用户之间的相似度,进行比较,最终筛选出与目标用户相似度最高的用户集合。余弦相似度公式为:

商品推荐系统运用Python技术和MySQL数据库技术,进行系统的实现,包括系统的界面的实现,业务逻辑流程的实现以及数据库的实现等。

三、运行截图:

e18350958932c8c0e70b144c061ad39e.jpeg

96f6ee6e179842d10fe29b26f86cc81f.jpeg

87878052b39efed88fa4b0518bc639c9.jpeg

ec5c77425c48429899237422b879556a.jpeg

0b5880cdc19c7d269df3ed10e37deec3.jpeg

8b91a04136c8efc98c932ac81ede0076.jpeg

6500b47df678b9af386669d782d82910.jpeg

9fa87d87f61aed3f49b0cae03063cb1c.jpeg

9c54c7bf21ea7c0e84ec660f90562e4b.jpeg

61d0bd52c33a4f4c8aad3a5aba7d0490.jpeg

62a50b06dc45c9d11d38c934210922bf.jpeg

bc5d04bdfdfbc19e5d7c64e16b008ad5.jpeg

d027c45504195e15c468447ec8b11afe.jpeg

6bd405b9f50aafd1add31da10f09639e.jpeg

bdc901a2efcb6624077e4c8be737873b.jpeg

四、论文目录:

9828b5436c4ebf2c0619337b45515c49.jpeg

d2b0e65bc96cc5a8b57d32528162e46b.jpeg

0ad7b00cf843d465a8d4521eb4ca3f27.jpeg

47fd5b9c4fae83088928d9fa54477a7c.jpeg

9db64436335440840d1ea8c6661927c0.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值