一.概述
-
掌握二进制、八进制、十进制、十六进制的运算
-
数制,也称为“计数制”,是用一组固定的符号和统一的规则来表示数值的方法。任何一个数制都包含两个基本要素:基数和位权,及一组数码符号。
-
数码:用不同的数字符号来表示一种数制的数值,这些数字符号称为“数码”。
-
基数:数制所使用数码的个数。例如,二进制的基数为2;十进制的基数为10。
-
位权:数制中某一位上的1所表示数值的大小(所处位置的价值)。例如,十进制的123,1的位权是100,2的位权是10,3的位权是1。二进制中的 1011 ,第一个1的位权是8,0的位权是4,第二个1的位权是2,第三个1的位权是1。
-数制符号
二.转换思想
1.二、八、十六进制----------转换--------》十进制
- 按权相加法(按权展开求和)
把一个任意R进制数an an-1 an-2 ... a1 a0 a-1 a-2 ... a-m,首先写成加权系数
展开式,然后按十进制规则加法求和。
2.十进制----------转换--------》R进制
- 整数部分
除R取余数,直到商为0,得到的余数即为二进制各位的数码,余数从右到左排列
- 小数部分
乘R取整数,得到的整数位二进制各位的数码,整数从左到右排列
3.十六进制----------转换--------》二进制
- 1位十六进制对应4位二进制
4.二进制----------转换--------》十六进制
- 二进制的四位为一组
- 从二进制数的小数点开始,分别从左、右四位为一组
- 不足四位则补零
三.实现举例
1.二进制----------转换--------》十进制
(101101.101)2
=1x25+0x24+1x23+1x22+0x21+1x20+1x2-1+0x2-2+1x2-3
=32+0+8+4+1+0.5+0+0.125
=45.625
2.十进制----------转换--------》二进制
整数:除以2取余,逆序输出
(57)10=(101011)2
2 57
2 28 ......1
2 14 ......1
2 7 ......0
2 3 ......1
2 1 ......0
1 ......1
小数:乘以2取整,顺序输出
(0.875)10=(0.111)
0.875
x2
1.75
x2
1.5
x2
1.0
3.八进制----------转换--------》二进制
(234.123)8 = (010 011 100 . 001 010 011)2
4.二进制----------转换--------》八进制
(101 110 111. 010 111 )2 = (567.27)10
5.十六进制----------转换--------》二进制
(6AE.3)16 = (0110 1010 1110 . 0011)2
6.二进制----------转换--------》十六进制
(0101 1101 . 1011)2 = (5D.B)16