Oozie的安装和任务调度:
简介
Oozie英文翻译为:驯象人。一个基于工作流引擎的开源框架,由Cloudera公司贡献给Apache,提供对Hadoop Mapreduce、Pig Jobs的任务调度与协调。Oozie需要部署到Java Servlet容器中运行。主要用于定时调度任务,多任务可以按照执行的逻辑顺序调度。
功能
Oozie是一个管理Hdoop作业(job)的工作流程调度管理系统 Oozie的工作流是一系列动作的直接周期图(DAG) Oozie协调作业就是通过时间(频率)和有效数据触发当前的Oozie工作流程 Oozie是Yahoo针对Apache Hadoop开发的一个开源工作流引擎。用于管理和协调运行在Hadoop平台上(包括:HDFS、Pig和MapReduce)的Jobs。Oozie是专为雅虎的全球大规模复杂工作流程和数据管道而设计 Oozie围绕两个核心:工作流和协调器,前者定义任务的拓扑和执行逻辑,后者负责工作流的依赖和触发
模块
Workflow:顺序执行流程节点,支持fork(分支多个节点),join(合并多个节点为一个)
Coordinator:定时触发workflow
Bundle Job:绑定多个Coordinator
常用节点
控制流节点(Control Flow Nodes):控制流节点一般都是定义在工作流开始或者结束的位置,比如start,end,kill等。以及提供工作流的执行路径机制,如decision,fork,join等。
动作节点(Action Nodes):负责执行具体动作的节点,比如:拷贝文件,执行某个Shell脚本等等。
部署
所需软件链接 链接:链接:https://pan.baidu.com/s/18_iOFGL06g7_Ye-mZZRwag 提取码:qlbu
部署 Hadoop
这里不详细介绍,请查阅Hadoop安装,这里用的是Clouder公司的CDH版本的Hadop。
修改配置
core-site.xml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 [hadoop@datanode1 hadoop]$ vim core-site.xml <configuration > <property > <name > fs.defaultFS</name > <value > hdfs://datanode1:9000</value > </property > <property > <name > hadoop.tmp.dir</name > <value > /opt/module/cdh/hadoop-2.5.0-cdh5.3.6/data</value > </property > <property > <name > fs.trash.interval </name > <value > 60</value > </property > <property > <name > hadoop.proxyuser.hadoop.hosts</name > <value > *</value > </property > <property > <name > hadoop.proxyuser.hadoop.groups</name > <value > *</value > </property > </configuration >
hadoop.proxyuser.admin.hosts类似属性中的hadoop用户替换成你的hadoop用户。因为我的用户名就是hadoop
yarn-site.xml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 [hadoop@datanode1 hadoop]$ vim yarn-site.xml <configuration > <property > <name > yarn.nodemanager.aux-services</name > <value > mapreduce_shuffle</value > </property > <property > <name > yarn.resourcemanager.hostname</name > <value > datanode2</value > </property > <property > <name > yarn.log-aggregation-enable</name > <value > true</value > </property > <property > <name > yarn.log-aggregation.retain-seconds</name > <value > 86400</value > </property > <property > <name > yarn.log.server.url</name > <value > http://datanode1:19888/jobhistory/logs/</value > </property > </configuration >
mapred-site.xml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 <configuration > <property > <name > mapreduce.framework.name</name > <value > yarn</value > </property > <property > <name > mapreduce.jobhistory.address</name > <value > datanode1:10020</value > </property > <property > <name > mapreduce.jobhistory.webapp.address</name > <value > datanode1:19888</value > </property > </configuration >
不要忘记同步到其他集群 然后namenode -for mate 执行初始化
部署 Oozie
oozie根目录下解压hadooplibs
1 tar -zxf oozie-hadooplibs-4.0.0-cdh5.3.6.tar.gz -C ../
在Oozie根目录下创建libext目录
拷贝依赖Jar包
1 cp -ra hadooplibs/hadooplib-2.5.0-cdh5.3.6.oozie-4.0.0-cdh5.3.6/* libext/
上传Mysql驱动包到libext目录下
上传ext-2.2.zip拷贝到libext目录下
修改oozie-site.xml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 属性:oozie.service.JPAService.jdbc.driver 属性值:com.mysql.jdbc.Driver 解释:JDBC的驱动 属性:oozie.service.JPAService.jdbc.url 属性值:jdbc:mysql://datanode1:3306/oozie 解释:oozie所需的数据库地址 属性:oozie.service.JPAService.jdbc.username 属性值:root 解释:数据库用户名 属性:oozie.service.JPAService.jdbc.password 属性值:123456 解释:数据库密码 属性:oozie.service.HadoopAccessorService.hadoop.configurations 属性值:*=/opt/module/cdh/hadoop-2.5.0-cdh5.3.6/etc/hadoop 解释:让Oozie引用Hadoop的配置文件
在Mysql中创建Oozie的数据库
1 2 mysql -uroot -p123456 mysql> create database oozie;
初始化Oozie
1 bin/oozie-setup.sh sharelib create -fs hdfs://datanode1:9000 -locallib oozie-sharelib-4.0.0-cdh5.3.6-yarn.tar.gz
创建oozie.sql文件
1 bin/oozie-setup.sh db create -run -sqlfile oozie.sql
打包项目,生成war包
1 bin/oozie-setup.sh prepare-war
需要zip命令 最小化安装可能需要
Oozie服务
1 2 3 bin/oozied.sh start //如需正常关闭Oozie服务,请使用: bin/oozied.sh stop
Web页面
Oozie任务
调度shell
1.解压官方模板
1 tar -zxf oozie-examples.tar.gz
2.创建工作目录
3.拷贝任务模板
1 cp -r examples/apps/shell/ oozie-apps/
4.shell脚本
1 2 3 4 5 6 7 8 9 # !/bin/bash i=1 mkdir /home/hadoop/oozie-test1 cd /home/hadoop/oozie-test1 for(( i=1;i<=100;i++ )) do d=$( date +%Y-%m-%d\ %H\:%M\:%S ) echo "data:$d $i">>/home/hadoop/oozie-test1/logs.log done
5.job.properties
1 2 3 4 5 6 7 nameNode=hdfs://datanode1:9000 jobTracker=datanode2:8032 queueName=shell examplesRoot=oozie-apps oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/shell EXEC=p1.sh
6.workflow.xml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 <workflow-app xmlns ="uri:oozie:workflow:0.4" name ="shell-wf" > <start to ="shell-node" /> <action name ="shell-node" > <shell xmlns ="uri:oozie:shell-action:0.2" > <job-tracker > ${jobTracker}</job-tracker > <name-node > ${nameNode}</name-node > <configuration > <property > <name > mapred.job.queue.name</name > <value > ${queueName}</value > </property > </configuration > <exec > ${EXEC}</exec > <file > /user/hadoop/oozie-apps/shell/${EXEC}#${EXEC}</file > <capture-output /> </shell > <ok to ="end" /> <error to ="fail" /> </action > <decision name ="check-output" > <switch > <case to ="end" > ${wf:actionData('shell-node')['my_output'] eq 'Hello Oozie'} </case > <default to ="fail-output" /> </switch > </decision > <kill name ="fail" > <message > Shell action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message > </kill > <kill name ="fail-output" > <message > Incorrect output, expected [Hello Oozie] but was [${wf:actionData('shell-node')['my_output']}]</message > </kill > <end name ="end" /> </workflow-app >
7.上传任务配置
1 /opt/module/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -put -f oozie-apps/ /user/hadoop
8.执行任务
1 bin/oozie job -oozie http://datanode1:11000/oozie -config oozie-apps/shell/job.properties -run
9.杀死任务
1 bin/oozie job -oozie http://datanode1:11000/oozie -kill 0000004-170425105153692-oozie-z-W
调度逻辑shell
在原有的基础上进行适当修改
1.job.properties
1 2 3 4 5 6 7 8 nameNode=hdfs://datanode1:9000 jobTracker=datanode2:8032 queueName=shell examplesRoot=oozie-apps oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/shell EXEC1=p1.sh EXEC2=p2.sh
2.脚本 p1.sh
1 2 3 4 5 6 7 8 9 #!/bin/bash mkdir /home/hadoop/Oozie2_test_p1 cd /home/hadoop/Oozie2_test_p1 i=1 for(( i=1;i<=100;i++ )) do d=$( date +%Y-%m-%d\ %H\:%M\:%S ) echo "data:$d $i">>/home/hadoop/Oozie2_test_p1/Oozie2_p1.log done
2.脚本 p2.sh
1 2 3 4 5 6 7 8 9 # !/bin/bash mkdir /home/hadoop/Oozie2_test_p1 cd /home/hadoop/Oozie2_test_p1 i=1 for(( i=1;i<=100;i++ )) do d=$( date +%Y-%m-%d\ %H\:%M\:%S ) echo "data:$d $i">>/home/hadoop/Oozie2_test_p1/Oozie2_p1.log done
3.workflow.xml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 <workflow-app xmlns ="uri:oozie:workflow:0.4" name ="shell-wf" > <start to ="shell-node" /> <action name ="shell-node" > <shell xmlns ="uri:oozie:shell-action:0.2" > <job-tracker > ${jobTracker}</job-tracker > <name-node > ${nameNode}</name-node > <configuration > <property > <name > mapred.job.queue.name</name > <value > ${queueName}</value > </property > </configuration > <exec > ${EXEC1}</exec > <file > /user/hadoop/oozie-apps/shell/${EXEC1}#${EXEC1}</file > <capture-output /> </shell > <ok to ="p2-shell-node" /> <error to ="fail" /> </action > <action name ="p2-shell-node" > <shell xmlns ="uri:oozie:shell-action:0.2" > <job-tracker > ${jobTracker}</job-tracker > <name-node > ${nameNode}</name-node > <configuration > <property > <name > mapred.job.queue.name</name > <value > ${queueName}</value > </property > </configuration > <exec > ${EXEC2}</exec > <file > /user/hadoop/oozie-apps/shell/${EXEC2}#${EXEC2}</file > <capture-output /> </shell > <ok to ="end" /> <error to ="fail" /> </action > <decision name ="check-output" > <switch > <case to ="end" > ${wf:actionData('shell-node')['my_output'] eq 'Hello Oozie'} </case > <default to ="fail-output" /> </switch > </decision > <kill name ="fail" > <message > Shell action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message > </kill > <kill name ="fail-output" > <message > Incorrect output, expected [Hello Oozie] but was [${wf:actionData('shell-node')['my_output']}]</message > </kill > <end name ="end" /> </workflow-app >
调度MapReduce
前提:确定YARN可用
1.拷贝官方模板到oozie-apps
1 [hadoop@datanode1 lib]$ cp /opt/module/cdh/hadoop-2.5.0-cdh5.3.6/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0-cdh5.3.6.jar ./
2.配置job.properties
1 2 3 4 5 6 7 nameNode=hdfs://datanode1:9000 jobTracker=datanode2:8032 queueName=map-reduce examplesRoot=oozie-apps oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/map-reduce/workflow.xml outputDir=/output
3.workflow.xml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 <workflow-app xmlns ="uri:oozie:workflow:0.2" name ="map-reduce-wf" > <start to ="mr-node" /> <action name ="mr-node" > <map-reduce > <job-tracker > ${jobTracker}</job-tracker > <name-node > ${nameNode}</name-node > <prepare > <delete path ="/output" /> </prepare > <configuration > <property > <name > mapred.job.queue.name</name > <value > ${queueName}</value > </property > <property > <name > mapred.mapper.new-api</name > <value > true</value > </property > <property > <name > mapred.reducer.new-api</name > <value > true</value > </property > <property > <name > mapreduce.job.output.key.class</name > <value > org.apache.hadoop.io.Text</value > </property > <property > <name > mapreduce.job.output.value.class</name > <value > org.apache.hadoop.io.IntWritable</value > </property > <property > <name > mapreduce.job.map.class</name > <value > org.apache.hadoop.examples.WordCount$TokenizerMapper</value > </property > <property > <name > mapreduce.job.reduce.class</name > <value > org.apache.hadoop.examples.WordCount$IntSumReducer</value > </property > <property > <name > mapred.map.tasks</name > <value > 1</value > </property > <property > <name > mapred.input.dir</name > <value > /input</value > </property > <property > <name > mapred.output.dir</name > <value > /_output</value > </property > </configuration > </map-reduce > <ok to ="end" /> <error to ="fail" /> </action > <kill name ="fail" > <message > Map/Reduce failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message > </kill > <end name ="end" /> </workflow-app >
4.拷贝jar包
1 [hadoop@datanode1 lib]$ cp /opt/module/cdh/hadoop-2.5.0-cdh5.3.6/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0-cdh5.3.6.jar ./
5.上传任务配置
1 /opt/module/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -put -f oozie-apps /user/hadoop/oozie-apps
6.执行任务
1 [hadoop@datanode1 oozie-4.0.0-cdh5.3.6]$ bin/oozie job -oozie http://datanode1:11000/oozie -config oozie-apps/map-reduce/job.properties -run
7.查看结果
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 [hadoop@datanode1 module]$ /opt/module/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -cat /input/*.txt 19/01/10 19:13:37 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable I Love Hadoop and Sopark I Love BigData and AI [hadoop@datanode1 module]$ /opt/module/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -cat /_output/p* 19/01/10 19:13:08 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable AI 1 BigData 1 Hadoop 1 I 2 Love 2 Sopark 1 and 2
调度定时任务/循环任务
前提:
1 2 3 4 5 # date -R # rm -rf /etc/localtime ln -s /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
ntp配置
主机配置
从机配置
从节点同步时间
1 2 3 4 5 service ntpd restart chkconfig ntpd on # 开机启动 ntpdate -u datanode1 crontab -e * */1 * * * /usr/sbin/ntpdate datanode1 #每一小时同步一次 注意 要用root创建
1.配置oozie-site.xml文件
1 2 3 属性:oozie.processing.timezone 属性值:GMT+0800 解释:修改时区为东八区区时
2.修改js框架代码
1 2 3 4 5 6 vi /opt/module /cdh/oozie-4.0 .0 -cdh5.3 .6 /oozie-server/webapps/oozie/oozie-console .js 修改如下: function getTimeZone ( ) { Ext.state.Manager.setProvider(new Ext.state.CookieProvider()); return Ext.state.Manager.get("TimezoneId" ,"GMT+0800" ); }
3.重启oozie服务,并重启浏览器(一定要注意清除缓存)
1 2 bin/oozied.sh stop bin/oozied.sh start
4.拷贝官方模板配置定时任务
1 cp -r examples/apps/cron/ oozie-apps/
5.修改job.properties
1 2 3 4 5 6 7 8 9 10 11 nameNode=hdfs://datanode1:9000 jobTracker=datanode2:8032 queueName=cronTask examplesRoot=oozie-apps oozie.coord.application.path=${nameNode}/user/${user.name}/${examplesRoot}/cron start=2019-01-10T21:40+0800 end=2019-01-10T22:00+0800 workflowAppUri=${nameNode}/user/${user.name}/${examplesRoot}/cron EXEC3=p3.sh
6.修改coordinator.xml 注意${coord:minutes(5)}的5是最小值不能比5再小了
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 <coordinator-app name ="cron-coord" frequency ="${coord:minutes(5)}" start ="${start}" end ="${end}" timezone ="GMT+0800" xmlns ="uri:oozie:coordinator:0.2" > <action > <workflow > <app-path > ${workflowAppUri}</app-path > <configuration > <property > <name > jobTracker</name > <value > ${jobTracker}</value > </property > <property > <name > nameNode</name > <value > ${nameNode}</value > </property > <property > <name > queueName</name > <value > ${queueName}</value > </property > </configuration > </workflow > </action > </coordinator-app >
7.创建脚本
1 2 3 # !/bin/bash d=$( date +%Y-%m-%d\ %H\:%M\:%S ) echo "data:$d $i">>/home/hadoop/Oozie3_p3.log
8.修改
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 <workflow-app xmlns ="uri:oozie:workflow:0.5" name ="one-op-wf" > <start to ="p3-shell-node" /> <action name ="p3-shell-node" > <shell xmlns ="uri:oozie:shell-action:0.2" > <job-tracker > ${jobTracker}</job-tracker > <name-node > ${nameNode}</name-node > <configuration > <property > <name > mapred.job.queue.name</name > <value > ${queueName}</value > </property > </configuration > <exec > ${EXEC3}</exec > <file > /user/hadoop/oozie-apps/cron/${EXEC3}#${EXEC3}</file > <capture-output /> </shell > <ok to ="end" /> <error to ="fail" /> </action > <kill name ="fail" > <message > Shell action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message > </kill > <kill name ="fail-output" > <message > Incorrect output, expected [Hello Oozie] but was [${wf:actionData('shell-node')['my_output']}]</message > </kill > <end name ="end" /> </workflow-app >
9.提交配置
1 /opt/module/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -put oozie-apps/cron/ /user/hadoop/oozie-apps
10.提交任务
1 bin/oozie job -oozie http://datanode1:11000/oozie -config oozie-apps/cron/job.properties -run