从小白开始刷算法 二分法篇 leetcode.74

序言

虽然算法很难,但不应该就放弃。这是一个学习笔记,希望你们喜欢~

先自己尝试写,大概十几分钟仍然写不出来
看思路,再尝试跟着思路写
仍然写不出来,再看视频
b站up视频推荐:爱学习的饲养员

leetcode其他文章:

数组篇:
从小白开始刷算法 数组篇 leetcode.485
从小白开始刷算法 数组篇 leetcode.283
从小白开始刷算法 数组篇 leetcode.27

链表篇:
从小白开始刷算法 ListNode 链表篇 leetcode.203
从小白开始刷算法 ListNode 链表篇 leetcode.206

队列篇
从小白开始刷算法 ListNode 链表篇 leetcode.933

栈篇
从小白开始刷算法 Stack 栈篇 leetcode.20
从小白开始刷算法 Stack 栈篇 leetcode.496

哈希篇
从小白开始刷算法 Hash 哈希篇 leetcode.217
从小白开始刷算法 Hash 哈希篇 leetcode.705

树篇
从小白开始刷算法 Tree 树篇 先序遍历 leetcode.144
从小白开始刷算法 Tree 树篇 中序遍历 leetcode.94
从小白开始刷算法 Tree 树篇 后序遍历 leetcode.94

堆篇
从小白开始刷算法 Heap 堆篇 最大堆排序 leetcode.215
小白开始刷算法 Heap 堆篇 最小堆排序 leetcode.692

双指针篇

从小白开始刷算法 对撞双指针 leetcode.881
从小白开始刷算法 双指针篇 leetcode.141

二分法篇
从小白开始刷算法 二分法篇 leetcode.704
从小白开始刷算法 二分法篇 leetcode.35
从小白开始刷算法 二分法篇 leetcode.162

二分法篇

难度:中等

题目:

74. 搜索二维矩阵

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。

示例 1:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true
示例 2:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false

题目来源:力扣(LeetCode)

二分法思路

能否写出:能写出。

时间:20多分钟

思路:

大体思路与二分法查找思路一样,从小白开始刷算法 二分法篇 leetcode.704

需要注意的是在二维数组中,索引位置的转换涉及到行和列的关系。通常情况下,二维数组的索引由两个值表示,分别是行索引和列索引。

如果给定一个二维数组 matrix,其中 matrix[i][j] 表示第 i 行第 j 列的元素,那么可以使用以下公式进行索引位置的转换:

  1. 将二维索引转换为一维索引:

    index = i * numColumns + j

    其中,i 是行索引,j 是列索引,numColumns 是二维数组的列数。

    这个公式将二维索引转换为一维索引,可以用于将二维数组表示的矩阵转换为一维数组进行处理。

  2. 将一维索引转换为二维索引:

    i = index / numColumns

    j = index % numColumns

    其中,index 是一维索引,numColumns 是二维数组的列数。

    这个公式将一维索引转换为对应的行索引和列索引,可以用于从一维数组中还原出二维数组的索引位置。

通过以上的索引转换公式,可以在处理二维数组时方便地进行索引位置的转换。

转换

// 仅是我的思路代码,leetcode上大神更厉害
class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int row = matrix[0].length;
        int col = matrix.length;
        int start = 0;
        int end = row * col -1;
        while (start <= end) {
            int mid = start+(end - start)/2;
            //通过计算得出二维数组的位置
            int e = matrix[mid / row][mid % row];
            if(e==target){
                return true;
            }
            if(e>target){
                end = mid-1;
            }else {
                start= mid+1;
            }
        }
        return false;
    }
}

时间复杂度: O(log n)

空间复杂度:O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小大凳子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值