论文地址:Hyperspectral imaging for dynamic thin film interferometry | Scientific Reports
目录
论文简介
动态薄膜干涉测量是一种用于非侵入性地表征在空间和时间上不断变化的液体薄膜厚度的技术,在实验室环境中被广泛研究,而阻碍其在商业上广泛应用的主要障碍是难以自动分析干涉图以恢复根本的薄膜厚度。
-
阻因
超越相位周期控制方程中干涉图中的像素强度与薄膜厚度非一一对应关系,自动分析变得复杂;
不可避免的成像和背景噪声所引入的不确定性放大了其固有的复杂性。
超越相位周期控制方程使自动分析变得复杂,该方程非唯一地将干涉图中的像素强度与薄膜厚度相关联。
-
现有方法及缺陷
(1) 使用参考颜色图手动识别区域处的薄膜厚度。 鲁棒,但是非常慢并且受到人类主观性的影响。参考文献:
(2) 利用薄膜中已知的绝对参考厚度进行条纹计数。 速度很快,但不够稳健,需要对薄膜的空间结构进行假设。参考文献:
https://pubs.acs.org/doi/abs/10.1021/la4003127
Domain expansion dynamics in stratifying foam films: experiments - PubMed
(3) 利用已知厚度分布的液体薄膜将干涉图中的像素强度预校准为薄膜厚度。适用场景有限。参考文献:
https://www.tandfonline.com/doi/abs/10.1080/10402009908982221
-
文章贡献
描述了一个使用快照式高光谱成像仪和相关算法的紧凑设置,用于自动确定动态液体薄膜的厚度分布。与人工匹配颜色重建的轮廓相比,该方法可以将薄膜厚度轮廓恢复到100nm范围内。
相关资料:
推扫式高光谱成像用于表征静态薄膜:Film thickness mapping using interferometric spectral imaging - Applied Spectral Imaging Ltd.
Inline hyperspectral thickness determination of thin films using neural networks
人工重建轮廓(作为真实图):Dynamic fluid-film interferometry as a predictor of bulk foam properties - Soft Matter (RSC Publishing)
-
理论依据
假设一束强度为的光束入射到厚度为d且折射率为的薄液膜上。薄膜的顶部和底部分别以折射率为和 的介质为界。 假设为正常入射以及薄膜不发生色散,从薄膜发出的反射光强度可以写为,
其中,
λ为光的波长,是相位差,1是捕获当光进入具有较高折射率的介质时发生的π辐射的相位差的指示函数,这里我理解为sign函数。和为正常入射时由菲涅耳方程得到的功率(强度)反射系数,
最后,在高光谱相机中,像素H的第i个通道感知的强度可以作为薄膜厚度的函数计算为:
为系统中滤波器的光谱响应,和是整体带通滤波器传输窗口中最小和最大的波长,是某一像素的第i个通道的光谱灵敏度。则某一具有 h 个通道的高光谱相机会将来自厚度为 d 的薄膜的反射光编码为 h 维向量。利用以上等式可以通过反算此 h 维向量以恢复薄膜厚度。
-
实验
图1中a为实验采用的动态流体膜干涉仪(DFI)装置,包含一个16通道快照式高光谱成像相机。为了确定高光谱相机的薄膜测量能力,文章还使用RGB相机进行了单气泡实验以作为基准(见相关资料中“人工重建轮廓”方法)。
图1 动态流体膜干涉仪(DFI)装置和数据示意
实验流程如图3所示:
(1)对于每个波段,利用薄膜厚度计算公式计算0-5000nm薄膜厚度范围内,不同薄膜厚度对应的理论光强,得到合成的“Spectral Map”(图2a)。
(理解:由于余弦函数的周期性,根据一定范围内的薄膜厚度求得的各波段的理论上的光强均呈现出上下浮动的变化)
(2)对来自快照HSI相机的原始图像进行适当的切片和拼接,以重建高光谱立方体;
(3)对立方体进行背景减法,然后进行裁剪、强度校正和归一化。背景减法是通过在没有薄膜的情况下对测量区域进行成像,然后从测量光谱中减去背景光谱来实现的。必要时的强度校正(对于平场校正)是通过对已知反射率的表面成像来完成的,并使用该结果来计算每个光谱波段的校正掩模。强度归一化是通过对干涉图中最大强度进行归一化来实现的。
(4)利用余弦距离度量在生成的HSI立方体中的每个像素和薄膜厚度计算公式生成的理论光谱图(图3a)之间进行k-Nearest neighbour搜索。在k近邻搜索中获得的第一个最近邻厚度用于构造厚度轮廓的初始估计。
第4步我还不太理解:在本文实验中,高光谱立方体中每个像素包含16个波段的信息,即16个光强值。而由于像素强度与薄膜厚度非一一对应关系,从Spectral Map即理论光谱图中可以看到,1个强度值如波段13中5matching的薄膜厚度则不止一个。要确定此像素处的薄膜厚度,则要在16个波段分别包含的数个薄膜厚度中利用以余弦距离为度量的knn选出一个合适的值。knn方法具体是如何实现的?向量是由什么组成的?16个相互组合的薄膜厚度值?
可供参考的资料:人工重建轮廓:
此方法同样在RGB三个波段处分别获得了数个薄膜厚度值,使三个波段处的候选厚度最匹配的厚度值即设定为此像素点处的薄膜厚度,可以看到图2中厚度估计为510nm。
图2 人工重建薄膜厚度法的厚度确定
(5)最后,利用空间优化算法来纠正任何错误分配的点。 该算法基本上通过在误分配点处 k 个可能的厚度值中的适当厚度替换任何不正确分配的厚度来强制实现薄膜厚度的空间连续性。 在实践中,这是通过识别具有非物理梯度的区域并利用梯度下降技术迭代地校正这些区域的厚度来实现的。
图3 高光谱薄膜干涉测量法流程
-
实验结果与分析
文章将优化前后的结果(图4c、d)与人工重建的厚度轮廓(作为真实图,图4b)进行对比。优化前重构的厚度轮廓与手动重构的轮廓大致相似,但由于干涉数据中的噪声和频谱混合,重建轮廓中存在不合理的梯度区域,需要利用优化程序去除这些错误分配的点,优化后得到的厚度轮廓与手动重建的轮廓非常相似。
图4 重建轮廓结果对比
文章提出的方法同样可以给出定量误差,见图5。在未优化的情况下,超过80%的像素绝对误差小于100nm,而在优化的情况下,超过90%的像素绝对误差小于100nm。
图5 绝对误差结果对比
文章提出的方法的一个优点是易于分析时间序列数据,以获得薄膜厚度的时间演化。文章里采用的是10帧/s进行成像。下面视频是实时薄膜厚度检测的演示。
实时薄膜厚度检测演示
作者使用最小厚度为1nm、最大厚度为2000nm的斜坡厚度斜面进行了补充实验,在图像中添加高斯噪声以说明高光谱干涉图对噪声的鲁棒性的优点,并分析了原因。作者还分析了使用高光谱成像的另一个优点:在厚度重建过程中,可以忽略干涉图中任意一点的光的绝对强度。此外,作者还分析了滤波器响应函数、增益、折射率误差、入射角度等对厚度重建的影响,具体可见补充材料。
补充材料:Hyperspectral imaging for dynamic thin film interferometry | Scientific Reports
-
高光谱薄膜干涉测量法的一些特性
(1)光谱类别的数量高于用于遥感或医学成像的传统高光谱成像。因此,用于薄膜干涉测量的光谱匹配程序应该具有高度的特异性,并且可能还需要优化算法(如本文中使用的)来完全重建厚度轮廓。
(2)光谱在空间相邻的光谱类别中逐渐变化。薄膜的空间连续性导致了空间相邻类别对应的连续的薄膜厚度。因此,光谱混合现象(由于缺乏足够的相机分辨率)不会在厚度重建期间造成困难,从而避免了对光谱解混技术的需求。
(3)由于液体薄膜是动态的,光谱特征在空间和时间上都迅速变化。因此,快照式高光谱成像(与推扫式等技术对比)更适合薄膜干涉测量。
-
对比与结论
作者选择通过比较所提出的技术与常用的光谱椭偏振法来结束文章。椭偏仪利用光在薄膜上斜反射时偏振态的变化来测量薄膜的厚度。椭偏仪以其亚埃的精度而闻名,特别是在处理纳米和亚纳米薄膜时,其测量范围为几埃到几十微米。
本文方法测量精度约为100 nm(相较于真实图),能够测量100 nm到4000 nm范围之间的薄膜,相较于人工重建方法的50nm的精确度似乎是可以接受的。因此,在精度以及测量范围本文方法相较于椭偏仪较差,但同样存在两个优势:可以表征在空间和时间上都发生变化的动态液膜以及不需要斜入射角。
---分界线---
-
薄膜检测方法个人调研
方法 | 应用光谱 | 测量范围 | 测量模式 | 薄膜状态 | 精度 |
文章算法 | 高光谱 | 100 nm到4000 nm | 面式 | 可动态 | 小于100 nm |
椭偏仪 | 多、高光谱 | 高光谱时:几埃到几十微米;多光谱时:0-1000nm | 点式 | 静态 | 亚埃 |
薄膜测厚仪 | 高光谱 | 1nm 到 10mm(叠加) | 点式 | 静态 | 0.02~1nm |
高光谱推扫式相机 | 高光谱 | 1.5~30微米/4~90微米 | 线式(配合传送台) | 静态 | 亚微米 |
小白一枚,欢迎大家交流指正,也欢迎留言或私信加入光谱相关学习交流群。与仪器、光学、计算摄像、遥感等专业的大佬和小白一起,相互学习、共同进步,分享论文投稿经验、数据集、学术会议、探讨多、高光谱在其他光谱方向上的应用等。