【tensorflow2.0】47.时间序列数据建模流程实例(总复习)

    本篇文章将利用TensorFlow2.0建立时间序列RNN模型,对国内的新冠肺炎疫情结束时间进行预测。数据集取自tushare。

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import tensorflow as tf 
from tensorflow.keras import models,layers,losses,metrics,callbacks 
#读取数据处理数据
%matplotlib inline
%config InlineBackend.figure_format = 'svg'

df = pd.read_csv("./data/covid-19.csv",sep = "\t")
df.plot(x = "date",y = ["confirmed_num","cured_num","dead_num"],figsize=(10,6))
plt.xticks(rotation=60)

dfdata = df.set_index("date")
dfdiff = dfdata.diff(periods=1).dropna()
dfdiff = dfdiff.reset_index("date")

dfdiff.plot(x = "date",y = ["confirmed_num","cured_num","dead_num"],figsize=(10,6))
plt.xticks(rotation=60)
dfdiff = dfdiff.drop("date",axis = 1).astype("float32")

#用某日前8天窗口数据作为输入预测该日数据
WINDOW_SIZE = 8

def batch_dataset(dataset):
    dataset_batched = dataset.batch(WINDOW_SIZE,drop_remainder=True)
    return dataset_batched

ds_data = tf.data.Dataset.from_tensor_slices(tf.constant(dfdiff.values,dtype = tf.float32)) \
   .window(WINDOW_SIZE,shift=1).flat_map(batch_dataset)

ds_label = tf.data.Dataset.from_tensor_slices(
    tf.constant(dfdiff.values[WINDOW_SIZE:],dtype = tf.float32))

#数据较小,可以将全部训练数据放入到一个batch中,提升性能
ds_train = tf.data.Dataset.zip((ds_data,ds_label)).batch(38).cache()

定义模型:这里我们用函数式模型

#考虑到新增确诊,新增治愈,新增死亡人数数据不可能小于0,设计如下结构
class Block(layers.Layer):
    def __init__(self, **kwargs):
        super(Block, self).__init__(**kwargs)
    
    def call(self, x_input,x):
        x_out = tf.maximum((1+x)*x_input[:,-1,:],0.0)
        return x_out
    
    def get_config(self):  
        config = super(Block, self).get_config()
        return config
tf.keras.backend.clear_session()
x_input = layers.Input(shape = (None,3),dtype = tf.float32)
x = layers.LSTM(3,return_sequences = True,input_shape=(None,3))(x_input)
x = layers.LSTM(3,return_sequences = True,input_shape=(None,3))(x)
x = layers.LSTM(3,return_sequences = True,input_shape=(None,3))(x)
x = layers.LSTM(3,input_shape=(None,3))(x)
x = layers.Dense(3)(x)

#考虑到新增确诊,新增治愈,新增死亡人数数据不可能小于0,设计如下结构
#x = tf.maximum((1+x)*x_input[:,-1,:],0.0)
x = Block()(x_input,x)
model = models.Model(inputs = [x_input],outputs = [x])
model.summary()

'''
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, None, 3)]         0         
_________________________________________________________________
lstm (LSTM)                  (None, None, 3)           84        
_________________________________________________________________
lstm_1 (LSTM)                (None, None, 3)           84        
_________________________________________________________________
lstm_2 (LSTM)                (None, None, 3)           84        
_________________________________________________________________
lstm_3 (LSTM)                (None, 3)                 84        
_________________________________________________________________
dense (Dense)                (None, 3)                 12        
_________________________________________________________________
block (Block)                (None, 3)                 0         
=================================================================
Total params: 348
Trainable params: 348
Non-trainable params: 0
_________________________________________________________________
'''

训练模型

#自定义损失函数,考虑平方差和预测目标的比值
class MSPE(losses.Loss):
    def call(self,y_true,y_pred):
        err_percent = (y_true - y_pred)**2/(tf.maximum(y_true**2,1e-7))
        mean_err_percent = tf.reduce_mean(err_percent)
        return mean_err_percent
    
    def get_config(self):
        config = super(MSPE, self).get_config()
        return config
import os
import datetime

optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)
model.compile(optimizer=optimizer,loss=MSPE(name = "MSPE"))

stamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
logdir = os.path.join('data', 'autograph', stamp)

## 在 Python3 下建议使用 pathlib 修正各操作系统的路径
# from pathlib import Path
# stamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
# logdir = str(Path('./data/autograph/' + stamp))

tb_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
#如果loss在100个epoch后没有提升,学习率减半。
lr_callback = tf.keras.callbacks.ReduceLROnPlateau(monitor="loss",factor = 0.5, patience = 100)
#当loss在200个epoch后没有提升,则提前终止训练。
stop_callback = tf.keras.callbacks.EarlyStopping(monitor = "loss", patience= 200)
callbacks_list = [tb_callback,lr_callback,stop_callback]

history = model.fit(ds_train,epochs=500,callbacks = callbacks_list)

'''
只展示最后5个
Epoch 495/500
1/1 [==============================] - 0s 50ms/step - loss: 0.0858
Epoch 496/500
1/1 [==============================] - 0s 69ms/step - loss: 0.0859
Epoch 497/500
1/1 [==============================] - 0s 63ms/step - loss: 0.0857
Epoch 498/500
1/1 [==============================] - 0s 56ms/step - loss: 0.0858
Epoch 499/500
1/1 [==============================] - 0s 54ms/step - loss: 0.0857
Epoch 500/500
1/1 [==============================] - 0s 57ms/step - loss: 0.0858
'''

评估模型

%matplotlib inline
%config InlineBackend.figure_format = 'svg'

import matplotlib.pyplot as plt

def plot_metric(history, metric):
    train_metrics = history.history[metric]
    epochs = range(1, len(train_metrics) + 1)
    plt.plot(epochs, train_metrics, 'bo--')
    plt.title('Training '+ metric)
    plt.xlabel("Epochs")
    plt.ylabel(metric)
    plt.legend(["train_"+metric])
    plt.show()
plot_metric(history,"loss")

使用模型

#使用dfresult记录现有数据以及此后预测的疫情数据
dfresult = dfdiff[["confirmed_num","cured_num","dead_num"]].copy()
dfresult.tail()

#预测此后100天的新增走势,将其结果添加到dfresult中
for i in range(100):
    arr_predict = model.predict(tf.constant(tf.expand_dims(dfresult.values[-38:,:],axis = 0)))

    dfpredict = pd.DataFrame(tf.cast(tf.floor(arr_predict),tf.float32).numpy(),
                columns = dfresult.columns)
    dfresult = dfresult.append(dfpredict,ignore_index=True)

dfresult.query("confirmed_num==0").head()

# 第55天开始新增确诊降为0,第45天对应3月10日,也就是10天后,即预计3月20日新增确诊降为0
# 注:该预测偏乐观


dfresult.query("cured_num==0").head()

# 第164天开始新增治愈降为0,第45天对应3月10日,也就是大概4个月后,即7月10日左右全部治愈。
# 注: 该预测偏悲观,并且存在问题,如果将每天新增治愈人数加起来,将超过累计确诊人数。

保存模型

model.save('./data/tf_model_savedmodel', save_format="tf")
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: TensorFlow 2.0的设计理念是简单粗暴,旨在提供更加直观、易用的编程体验,让用户更快速地构建、训练和部署机器学习模型。以下是TensorFlow 2.0的简单粗暴特性: 1. 动态图计算:TensorFlow 2.0默认采用动态图计算方式,即使用即定义计算图。这使得用户能够像编写Python代码一样自然地构建和调试模型,无需担心图构建过程中的繁琐细节。 2. Keras集成:TensorFlow 2.0将Keras作为其高级神经网络API的标准前端,实现了更加简洁、易懂的模型构建和训练接口。用户无需再额外安装和配置Keras,而且可以直接利用Keras强大的功能,如模型序列化、多种损失函数和优化器等。 3. 切换模式:TensorFlow 2.0提供了一个方便的转换工具,用户可以将TensorFlow 1.x的代码迁移到2.0版本,以享受新的特性,无需重写整个代码。这种平滑迁移的设计使得用户更容易接受新版本并从中受益。 4. Eager Execution(即时执行):TensorFlow 2.0中的Eager Execution模式使得用户可以逐行执行模型代码并立即返回结果,这有助于快速验证和调试模型,尤其对于初学者来说更容易上手。 5. SavedModel格式:TensorFlow 2.0引入了SavedModel格式作为模型的默认保存格式,该格式具有更好的跨平台和版本控制的兼容性。用户能够更方便地保存和分享自己的模型,同时也能更好地与其他TensorFlow开发者进行模型交流。 之,TensorFlow 2.0的简单粗暴特性使得机器学习的开发变得更加直观、高效,并能够吸引更多的开发者加入到机器学习的领域中。 ### 回答2: TensorFlow 2.0是一种简单粗暴的机器学习框架。相较于以往版本,2.0在易用性、灵活性和效率方面都有很大的提升。 首先,TensorFlow 2.0引入了eager execution(即即时执行),这意味着我们可以像编写Python代码一样编写和运行TensorFlow操作,而无需定义计算图。这样可以更容易地调试和理解代码,使得开发过程更加直观和高效。 其次,TensorFlow 2.0取消了许多低级API,如tf.Session和tf.placeholder,大大减少了代码的复杂度。取而代之的是一些更高级且易用的API,如tf.keras,它提供了一个简单而且强大的接口来构建神经网络模型。我们可以使用一些简单的函数调用来定义和训练模型,从而减少了样板代码,同时还能保持高度的灵活性。 此外,TensorFlow 2.0还提供了一个称为tf.data的新的高性能数据输入管道。我们可以使用tf.data.Dataset将数据集导入模型中,并进行预处理、批处理等操作,以便更好地利用硬件资源,并实现更高效的训练过程。 最后,TensorFlow 2.0充分利用了现代硬件的加速能力,如GPU和TPU。它使用了tf.function装饰器来自动转换函数为高性能的图执行模式,并支持分布式训练,以便在分布式系统上进行大规模的模型训练。 综上所述,TensorFlow 2.0确实是一种简单粗暴的机器学习框架。它简化了开发过程,提高了代码的可读性和可维护性,并利用了现代硬件的优势,从而大大提升了训练效率和性能。无论是初学者还是有经验的开发者,都可以受益于这个强大而易用的框架。 ### 回答3: 简单粗暴的TensorFlow 2.0是一个更新版本的Google开源机器学习框架,旨在让使用变得更加简便。TensorFlow 2.0采用了Eager Execution模式,移除了一些繁琐的操作,与Python的语义更加契合。这使得建立和训练神经网络变得更加直观和容易。 TensorFlow 2.0引入了Keras作为其主要高级API,将其整合为TensorFlow的一部分。Keras提供了丰富而直观的高级API,可以方便地构建各种神经网络模型。通过将Keras集成到TensorFlow中,使用者可以轻松地创建、训练和部署深度学习模型。 TensorFlow 2.0还引入了tf.function装饰器,允许将普通Python函数转换为高效的TensorFlow图,加速模型的训练和推理过程。 此外,TensorFlow 2.0对于分布式训练、模型部署和端到端生态系统的支持都有所改进。它提供了更好的工具和接口,使得分布式机器学习变得更加容易。TensorFlow 2.0还支持模型在移动设备、Web和边缘设备上部署,并提供了可拓展的生态系统,包括TensorFlow Hub、TensorBoard和TensorFlow.js等。 之,简单粗暴的TensorFlow 2.0通过增强开发者的体验和提供更加直观的API,大大简化了神经网络的构建和训练过程。新版本的引入了许多新特性和改进,使得TensorFlow 2.0成为构建高性能、可扩展的机器学习模型的理想选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值