https://ac.nowcoder.com/acm/contest/1069/J
思路:dp[i][j]表示i时刻j因子;
#include <iostream>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <map>
#include<bits/stdc++.h>
using namespace std;
#define sfi(i) scanf("%d",&i)
#define sfl(i) scanf("%lld",&i)
#define sfs(i) scanf("%s",(i))
#define pri(i) printf("%d\n",i)
#define sff(i) scanf("%lf",&i)
#define ll long long
#define ull unsigned long long
#define mem(x,y) memset(x,y,sizeof(x))
#define INF 0x3f3f3f3f
#define eps 1e-10
#define PI acos(-1.0)
#define lowbit(x) ((x)&(-x))
#define zero(x) (((x)>0?(x):-(x))<eps)
#define fl() printf("flag\n")
#define MOD(x) ((x%mod)+mod)%mod
#define endl '\n'
#define pb push_back
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
/*
//---------------------------------------------------------
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/priority_queue.hpp>
using namespace __gnu_pbds;
*/
//gp_hash_table<string,int>mp2;
//__gnu_pbds::priority_queue<int>q;//因为放置和std重复,故需要带上命名空间
//__gnu_pbds::priority_queue<int,greater<int>,pairing_heap_tag> pq;//最快
//----------------------------------------------------------
/*
//----------------------------------------------------------
const int BufferSize = 1 << 16;
char buffer[BufferSize], *_head, *_tail;
inline char Getchar() {
if (_head == _tail) {
int l = fread(buffer, 1, BufferSize, stdin);
_tail = (_head = buffer) + l;
}
return *_head++;
}
inline int read() {
int x = 0, f = 1;char c = Getchar();
for (;!isdigit(c);c = Getchar()) if (c == '-') f = -1;
for (;isdigit(c);c = Getchar()) x = x * 10 + c - '0';
return x * f;
}
//----------------------------------------------------------
*/
const int maxn=5e5+9;
const int maxm=4e5+9;
const int mod=1e9+7;
int n,m;
int dp[10009][509];
int d[10009];
int main()
{
//FAST_IO;
//freopen("input.txt","r",stdin);
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>d[i];
}
dp[0][0]=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
dp[i][j]=dp[i-1][j-1]+d[i];
}
dp[i][0]=dp[i-1][0];
for(int j=1;j<=m&&i>=j;j++)
{
dp[i][0]=max(dp[i][0],dp[i-j][j]);
}
}
cout<<dp[n][0]<<endl;
return 0;
}