买卖股票的最佳时机 II
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
解法1:找到相邻的谷峰值,所有的谷峰值之差的绝对值的和就是利润的最大值
可以看到A+B=C
实现代码:
class Solution {
public:
int maxProfit(vector<int>& prices) {
if(prices.size()<2) return 0;
int i=0;
int maxpro=0;//最大利润
int valley=prices[0];//谷值
int peak=prices[0];//峰值
while(i<prices.size()-1)
{
while(i<prices.size()-1 && prices[i+1]<=prices[i])
i++;
valley=prices[i];
while(i<prices.size()-1 && prices[i+1]>=prices[i])
i++;
peak=prices[i];
maxpro+=peak-valley;
}
return maxpro;
}
};
解法2:找递增区间,所有子递增区间的利润和就是最大利润
可以看到A+B+C=D
实现代码:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int maxprofit = 0;
for (int i = 1; i < prices.size(); i++) {
if (prices[i] > prices[i - 1])
maxprofit += prices[i] - prices[i - 1];
}
return maxprofit;
}
};