1 题目
Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Example 1:
Input: [[1,2],[2,3],[3,4],[1,3]]
Output: 1
Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.
Example 2:
Input: [[1,2],[1,2],[1,2]]
Output: 2
Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Example 3:
Input: [[1,2],[2,3]]
Output: 0
Explanation: You don't need to remove any of the intervals since they're already non-overlapping.
Note:
- You may assume the interval's end point is always bigger than its start point.
- Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.
2 尝试解
2.1 分析
给定N个区间,问至少去掉几个使得剩余的区间没有重叠区(不包括边界)。
等价于求不重叠区间的最大个数。将区间按照起点大小排列,每次取起点最大的、不与上一个所取的区间冲突的区间即可。参考算法导论活动选择问题以及#646 Maximum Length of Pair Chain。
2.2 代码
class Solution {
public:
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
sort(intervals.begin(),intervals.end());
int last_begin = INT_MAX;
int result = intervals.size();
while(intervals.size()){
if(intervals.back()[1] <=last_begin){
result -= 1;
last_begin = intervals.back()[0];
}
intervals.pop_back();
}
return result;
}
};
3 标准解
class Solution {
public:
int eraseOverlapIntervals(vector<Interval>& intervals) {
auto comp = [](const Interval& i1, const Interval& i2){ return i1.start < i2.start; };
sort(intervals.begin(), intervals.end(), comp);
int res = 0, pre = 0;
for (int i = 1; i < intervals.size(); i++) {
if (intervals[i].start < intervals[pre].end) {
res++;
if (intervals[i].end < intervals[pre].end) pre = i;
}
else pre = i;
}
return res;
}
};