过载保护
令牌桶算法
是一个存放固定容量令牌的桶,按照固定速率往桶里添加令牌。令牌桶算法的描述如下:
- 假设限制2r/s,则按照500毫秒的固定速率往桶中添加令牌。
- 桶中最多存放 b 个令牌,当桶满时,新添加的令牌被丢弃或拒绝。
- 当一个 n 个字节大小的数据包到达,将从桶中删除n 个令牌,接着数据包被发送到网络上。
- 如果桶中的令牌不足 n 个,则不会删除令牌,且该数据包将被限流(要么丢弃,要么缓冲区等待)。
token-bucket rate limit algorithm: /x/time/rate
令牌桶流入速度固定,允许请求激增。单机部署就可以实现稳定的微服务限流
漏桶算法
作为计量工具(The Leaky Bucket Algorithm as a Meter)时,可以用于流量整形(Traffic Shaping)和流量控制(TrafficPolicing),漏桶算法的描述如下:
- 一个固定容量的漏桶,按照常量固定速率流出水滴。
- 如果桶是空的,则不需流出水滴。
- 可以以任意速率流入水滴到漏桶。
- 如果流入水滴超出了桶的容量,则流入的水滴溢出了(被丢弃),而漏桶容量是不变的。
leaky-bucket rate limit algorithm: /go.uber.org/ratelimit
单机版可以实现稳定的微服务限流
漏斗桶/令牌桶确实能够保护系统不被拖垮, 但不管漏斗桶还是令牌桶, 其防护思路都是设定一个指标, 当超过该指标后就阻止或减少流量的继续进入,当系统负载降低到某一水平后则恢复流量的进入。但其通常都是被动的,其实际效果取决于限流阈值设置是否合理,但往往设置合理不是一件容易的事情。
- -集群增加机器或者减少机器限流阈值是否要重新设置?
- 设置限流阈值的依据是什么?
- 人力运维成本是否过高?
- 当调用方反馈429时, 这个时候重新设置限流, 其实流量高峰已经过了重新评估限流是否有意义?
这些其实都是采用漏斗桶/令牌桶的缺点, 总体来说就是太被动, 不能快速适应流量变化。
因此我们需要一种自适应的限流算法,即: 过载保护,根据系统当前的负载自动丢弃流量。
计算系统临近过载时的峰值吞吐作为限流的阈值来进行流量控制,达到系统保护。
-
服务器临近过载时,主动抛弃一定量的负载,目标是自保。
-
在系统稳定的前提下,保持系统的吞吐量。
常见做法:利特尔法则
CPU、内存作为信号量进行节流(注意在内存激增时,会出发GC)。 -
队列管理: 队列长度、LIFO。
-
可控延迟算法: CoDel。
如何计算接近峰值时的系统吞吐?
- CPU: 使用一个独立的线程采样,每隔 250ms 触发一次。在计算均值时,使用了简单滑动平均去除峰值的影响。
- Inflight: 当前服务中正在进行的请求的数量。
- Pass&RT: 最近5s,pass 为每100ms采样窗口内成功请求的数量,rt 为单个采样窗口中平均响应时间。
限流
限流是指在一段时间内,定义某个客户或应用可以接收或处理多少个请求的技术。例如,通过限流,你可以过滤掉产生流量峰值的客户和微服务,或者可以确保你的应用程序在自动扩展(Auto Scaling)失效前都不会出现过载的情况。
- 令牌桶、漏桶 针对单个节点,无法分布式限流。
- QPS 限流
- 不同的请求可能需要数量迥异的资源来处理。
- 某种静态 QPS 限流不是特别准。
- 给每个用户设置限制
- 全局过载发生时候,针对某些“异常”进行控制。
- 一定程度的“超卖”配额。
- 按照优先级丢弃。
- 拒绝请求也需要成本。
分布式限流
分布式限流,是为了控制某个应用全局的流量,而非真对单个节点纬度。
- 单个大流量的接口,使用 redis 容易产生热点。
- pre-request 模式对性能有一定影响,高频的网络往返。
思考: - 从获取单个 quota 升级成批量 quota。quota: 表示速率,获取后使用令牌桶算法来限制。
- 每次心跳后,异步批量获取 quota,可以大大减少请求 redis 的频次,获取完以后本地消费,基于令牌桶拦截。
- 每次申请的配额需要手动设定静态值略欠灵活,比如每次要20,还是50。
如何基于单个节点按需申请,并且避免出现不公平的现象?
初次使用默认值,一旦有过去历史窗口的数据,可以基于历史窗口数据进行 quota 请求。
思考:
- 我们经常面临给一组用户划分稀有资源的问题,他们都享有等价的权利来获取资源,但是其中一些用户实际上只需要比其他用户少的资源。
那么我们如何来分配资源呢?一种在实际中广泛使用的分享技术称作“最大最小公平分享”(Max-Min Fairness)。
直观上,公平分享分配给每个用户想要的可以满足的最小需求,然后将没有使用的资源均匀的分配给需要‘大资源’的用户。
最大最小公平分配算法的形式化定义如下:
- 资源按照需求递增的顺序进行分配。
- 不存在用户得到的资源超过自己的需求。
- 未得到满足的用户等价的分享资源。
重要性
每个接口配置阈值,运营工作繁重,最简单的我们配置服务级别 quota,更细粒度的,我们可以根据不同重要性设定 quota,我们引入了重要性(criticality):
- 最重要 CRITICAL_PLUS,为最终的要求预留的类型,拒绝这些请求会造成非常严重的用户可见的问题。
- 重要 CRITICAL,生产任务发出的默认请求类型。拒绝这些请求也会造成用户可见的问题。但是可能没那么严重。
- 可丢弃的 SHEDDABLE_PLUS 这些流量可以容忍某种程度的不可用性。这是批量任务发出的请求的默认值。这些请求通常可以过几分钟、几小时后重试。
- 可丢弃的 SHEDDABLE 这些流量可能会经常遇到部分不可用情况,偶尔会完全不可用。
gRPC 系统之间,需要自动传递重要性信息。如果后端接受到请求 A,在处理过程中发出了请求 B 和 C 给其他后端,请求 B 和 C 会使用与 A 相同的重要性属性。
- 全局配额不足时,优先拒绝低优先级的。
- 全局配额,可以按照重要性分别设置。
- 过载保护时,低优先级的请求先被拒绝。
熔断
断路器(Circuit Breakers): 为了限制操作的持续时间,我们可以使用超时,超时可以防止挂起操作并保证系统可以响应。因为我们处于高度动态的环境中,几乎不可能确定在每种情况下都能正常工作的准确的时间限制。断路器以现实世界的电子元件命名,因为它们的行为是都是相同的。断路器在分布式系统中非常有用,因为重复的故障可能会导致雪球效应,并使整个系统崩溃。
- 服务依赖的资源出现大量错误。
- 某个用户超过资源配额时,后端任务会快速拒绝请求,返回“配额不足”的错误,但是拒绝回复仍然会消耗一定资源。有可能后端忙着不停发送拒绝请求,导致过载。
但一刀切的形式太过暴力,用户的请求失败率太高。
自适应保护的熔断
Google SRE中有这样一种是算法:
p = max(0, (requests - K*accepts) / (requests + 1))
p代表被丢掉流量的概率
K越小代表熔断越激进(K=2是默认值)
当request趋近于正无穷,那么这个公式的结果极限趋近1
这种方式实现了在系统允许的情况下,尽可能放多的流量进来,而不是全部拒绝。相对一刀切的情况,用户请求成功率会高很多。
客户端流控
positive feedback: 用户总是积极重试,访问一个不可达的服务。
- 客户端需要限制请求频次,retry backoff 做一定的请求退让。
- 可以通过接口级别的error_details,挂载到每个 API 返回的响应里。
Gutter
基于熔断的 gutter kafka ,用于接管自动修复系统运行过程中的负载,这样只需要付出10%的资源就能解决部分系统可用性问题(双熔断)。
我们经常使用 failover 的思路,但是完整的 failover 需要翻倍的机器资源,平常不接受流量时,资源浪费。高负载情况下接管流量又不一定完整能接住。所以这里核心利用熔断的思路,是把抛弃的流量转移到 gutter 集群,如果 gutter 也接受不住的流量,重新回抛到主集群,最大力度来接受。
Case Study
- 二层缓存穿透、大量回源导致的核心服务故障。
- 异常客户端引起的服务故障(query of death)
- 请求放大。
- 资源数放大。
- 用户重试导致的大面积故障。