Transformer
文章平均质量分 96
Transformer相关
胡侃有料
流水不争先,争的是滔滔不绝
展开
-
【Transformer】detr之loss逐行梳理(四)
detr之loss逐行梳理匹配,预测框和gt框进行匹配计算损失""""""self.num_classes = num_classes # 数据集类别数self.matcher = matcher # HungarianMatcher() 匈牙利算法 二分图匹配self.weight_dict = weight_dict # dict: 18 3x6 6个decoder的损失权重 6*(loss_ce+loss_giou+loss_bbox)原创 2024-04-26 14:52:27 · 1280 阅读 · 0 评论 -
【Transformer】detr之decoder逐行梳理(三)
detr之decoder逐行梳理。原创 2024-04-23 16:42:01 · 1432 阅读 · 1 评论 -
【Transformer】detr之encoder逐行梳理(二)
detr之encoder逐行梳理。原创 2024-04-22 16:14:33 · 540 阅读 · 0 评论 -
【Transformer】detr之backone逐行梳理(一)
detr 之backbone逐行梳理。原创 2024-04-22 13:54:54 · 1291 阅读 · 0 评论 -
【Transformer】detr梳理
detr。原创 2024-04-18 09:38:52 · 579 阅读 · 0 评论 -
【Transformer】Swin梳理
every blog every motto: You can do more than you think.https://blog.csdn.net/weixin_39190382?type=blogswin论文: https://arxiv.org/pdf/2103.14030v1.pdf时间: 2021.3.25作者: Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo网原创 2024-04-18 09:37:37 · 301 阅读 · 0 评论 -
【Transformer】vit梳理
vit梳理。原创 2024-04-18 09:35:17 · 860 阅读 · 0 评论 -
【Transformer】transformer注解
transformer注解在过去的一年里,《Attention is all you need》中的transformer一直萦绕在很多人的脑海里。除了在翻译质量上产生重大改进之外,它还为许多其他NLP任务提供了一种新的架构。论文本身写得很清楚,但传统观点认为很难正确执行。在这篇文章中,我将以逐行实现的形式呈现论文的注释版本。我重新整理并删除了原论文中的一些章节,并在全文中添加了注释。这个文档本身就是一个工作笔记本,应该是一个完全可用的实现(可以在jupyter notebook中运行)。原创 2024-03-23 21:10:35 · 880 阅读 · 0 评论 -
【RNNsearch】neural machine translation by jointly learning to align and translate阅读与思考
neural machine translation by jointly learning to align and translate阅读与思考作为transformer的前传,同时,作为在nlp中第一篇注意力机制相关文章,还是很有必要一读。本文的主要贡献是打破了此前翻译中encoder-decoder需将句子变换到一个固定的长度,采用自适应方法。arxiv第一版时间为2014年。原创 2023-12-22 16:11:54 · 933 阅读 · 0 评论 -
【Transformer】从attention走向Transformer
从attention到Transformer变化过程原创 2023-06-07 15:38:36 · 709 阅读 · 0 评论