knn算法

什么是knn

​ kNN(k-NearestNeighbor),也就是k最近邻算法。顾名思义,所谓K最近邻,就是k个最近的邻居的意思。也就是在数据集中,认为每个样本可以用离他最距离近的k个邻居来代表。

​ 它是一种常用的监督学习方法,在分类任务中可以采用“投票法”,在回归任务中可以采用“平均法”,以及基于距离远近进行加权平均或加权投票,距离越近的样本权重越大。

​ 简单来说就是“近朱者赤近墨者黑”思想的直观体现。

​ 注:这里的距离可能是欧式距离或曼哈顿距离

kNN算法流程

通过理解算法思想,可以将其简化为“找邻居+投票”。K近邻法使用的模型,实际上是特征空间的划分。模型由三个基本要素决定:

  • 距离度量
  • k值
  • 分类决策规则

其中两个实例点之间的距离反映了相似程度。一般来说使用欧氏距离来计算。

梳理kNN算法流程如下:

  1. 计算测试对象到训练集中每个对象的距离

  2. 按照距离的远近排序

  3. 选取与当前测试对象最近的k的训练对象,作为该测试对象的邻居

  4. 统计这k个邻居的类别频次

  5. k个邻居里频次最高的类别,即为测试对象的类别

简单来说,如下图,当k=3,那么数据样本应该是属于classB,当k=6时,那么数据样本应该是属于classA,当然,如果k=1的话,那么就能确定唯一只,但是这样的话很容易变成异常值干扰,所以,只要距离类别选择合适,数据样本越大,准确度应该是增高的

在这里插入图片描述

KNN算法在python的中实现

python中关于knn的算法实在sklearn包下的neighbors下的KNeighborsClassifier,具体的使用案例如下:

import numpy as np
from sklearn.neighbors import KNeighborsClassifier
# 创建kNN_classifier实例
kNN_classifier = KNeighborsClassifier(n_neighbors=6)

# raw_data_x是特征(x,y 坐标),raw_data_y是标签,0为良性,1为恶性
raw_data_x = [[3.393533211, 2.331273381], [3.110073483, 1.781539638], [1.343853454, 3.368312451],
              [3.582294121, 4.679917921], [2.280362211, 2.866990212], [7.423436752, 4.685324231],
              [5.745231231, 3.532131321], [9.172112222, 2.511113104], [7.927841231, 3.421455345],
              [7.939831414, 0.791631213]]

raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1,1]
# 设置训练组
X_train = np.array(raw_data_x)
y_train = np.array(raw_data_y)

# kNN_classifier做一遍fit(拟合)的过程,没有返回值,模型就存储在kNN_classifier实例中
fit = kNN_classifier.fit(X_train, y_train)
# KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
#                      metric_params=None, n_jobs=None, n_neighbors=6, p=2,
#                      weights='uniform')
print(fit)
x = [8.90933607318, 3.365731514]

# kNN进行预测predict,需要传入一个矩阵,而不能是一个数组。reshape()成一个二维数组,
#   第一个参数是1表示只有一个数据,第二个参数-1,numpy自动决定第二维度有多少
y_predict = kNN_classifier.predict(x.reshape(1,-1))
print(y_predict)

关于KNeighborsClassifier的构造方法

对于KNeighborsClassifier的方法:

# weights(权重): str or callable(自定义类型), 可选参数(默认为 ‘uniform’)。用于预测的权重参数,可选参数如下:
# 
# uniform : 统一的权重. 在每一个邻居区域里的点的权重都是一样的。
# distance : 权重点等于他们距离的倒数。使用此函数,更近的邻居对于所预测的点的影响更大。
# [callable] : 一个用户自定义的方法,此方法接收一个距离的数组,然后返回一个相同形状并且包含权重的数组。
# algorithm(算法): {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, 可选参数(默认为 'auto')。计算最近邻居用的算法:
# 
# ball_tree 使用算法BallTree
# kd_tree 使用算法KDTree
# brute 使用暴力搜索
# auto 会基于传入fit方法的内容,选择最合适的算法。注意 : 如果传入fit方法的输入是稀疏的,将会重载参数设置,直接使用暴力搜索。
# leaf_size(叶子数量): int, 可选参数(默认为 30)。传入BallTree或者KDTree算法的叶子数量。此参数会影响构建、查询BallTree或者KDTree的速度,以及存储BallTree或者KDTree所需要的内存大小。此可选参数根据是否是问题所需选择性使用。
# 
# p: integer, 可选参数(默认为 2)。用于Minkowski metric(闵可夫斯基空间)的超参数。p = 1, 相当于使用曼哈顿距离,p = 2, 相当于使用欧几里得距离],对于任何 p ,使用的是闵可夫斯基空间。
# 
# metric(矩阵): string or callable, 默认为 ‘minkowski’。用于树的距离矩阵。默认为闵可夫斯基空间,如果和p=2一块使用相当于使用标准欧几里得矩阵. 所有可用的矩阵列表请查询 DistanceMetric 的文档。
# 
# metric_params(矩阵参数): dict, 可选参数(默认为 None)。给矩阵方法使用的其他的关键词参数。
# 
# n_jobs: int, 可选参数(默认为 1)。用于搜索邻居的,可并行运行的任务数量。如果为-1, 任务数量设置为CPU核的数量。不会影响fit
def __init__(self, n_neighbors=5,
             weights='uniform', algorithm='auto', leaf_size=30,
             p=2, metric='minkowski', metric_params=None, n_jobs=None,
             **kwargs):
  super().__init__(
    n_neighbors=n_neighbors,
    algorithm=algorithm,
    leaf_size=leaf_size, metric=metric, p=p,
    metric_params=metric_params,
    n_jobs=n_jobs, **kwargs)
  self.weights = _check_weights(weights)

  n_neighbors: int, 可选参数(默认为 5)。用于kneighbors查询的默认邻居的数量

方法含义
fit(X, y)使用X作为训练数据,y作为目标值(类似于标签)来拟合模型。
get_params([deep])获取估值器的参数。
neighbors([X, n_neighbors, return_distance])查找一个或几个点的K个邻居。
kneighbors_graph([X, n_neighbors, mode])计算在X数组中每个点的k邻居的(权重)图。
predict(X)给提供的数据预测对应的标签。
predict_proba(X)返回测试数据X的概率估值。
score(X, y[, sample_weight])返回给定测试数据和标签的平均准确值。
set_params(**params)设置估值器的参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值